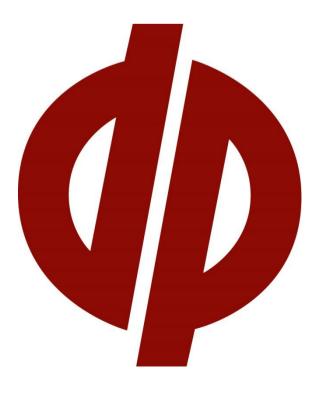
Geotechnical Report



Report on Geotechnical Investigation and Acid Sulphate Soil (ASS) Assessment

> Proposed Woolworths Development 923-935 Bourke Street, Waterloo

> > Prepared for Fabcot Pty Ltd

Project 86864.00 October 2019

Document History

Document details

Project No.	86864.00	Document No.	R.003.Rev0				
Document title	Report on Geotechnical Investigation and Acid Sulphate Soil (A						
	Assessment						
	Proposed Woolworths Development						
Site address	923-935 Bourke Street, Waterloo						
Report prepared for	Fabcot Pty Ltd						
File name	86864.00.R.003.Rev0.docx						

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Shahin Falahati	Bruce McPherson	17 October 2019	

Distribution of copies

Status	Electronic	Paper	Issued to	
Revision 0	1	0	Michelle Chiu, Fabcot Pty Ltd	

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature 🖍	Date
Author	A hand for the	17 October 2019
Reviewer	RADIAN	17 October 2019
		Douglas Partners Pty Ltd

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Table of Contents

Page

1.	Introd	uction1				
2.	Site D	Description1				
3.	Regio	nal Geology and Hydrogeology2				
	3.1	Geology2				
	3.2	Hydrogeology				
	3.3	Acid Sulphate Soils and Salinity				
4.	Field	Work Methods				
5.	Field	Work Results4				
	5.1	Boreholes4				
	5.2	Groundwater5				
6.	Labor	atory Testing7				
7.	Acid S	Sulphate Soils				
8.	Propo	sed Development9				
9.	Geote	echnical Model				
10.	Comments					
	10.1	Geotechnical Issues11				
	10.2	Dilapidation Surveys11				
	10.3	Excavation Conditions11				
	10.4	Vibrations12				
	10.5	Disposal of Excavated Material				
	10.6	Acid Sulphate Soils				
	10.7	Dewatering and Tanking13				
		10.7.1 General				
		10.7.2Drawdown and Settlement1410.7.3Groundwater Disposal15				
	10.0	•				
	10.0	Excavation Support				
		10.8.2 Temporary Batter Slopes and Vertical Rock Faces				
		10.8.3 Retaining Wall Design				
		10.8.4 Passive Resistance				
		10.8.5 Ground Anchors				
	10.9	Excavation Induced Ground Movement19				
		10.9.1 RMS Infrastructure				

	10.10 Foundations	19
	10.11 Seismic Design	21
	10.12 Soil and Groundwater Aggressivity	21
11.	Further Geotechnical Input	22
12.	Limitations	22

Appendix A:	About This Report
Appendix B:	Drawings
Appendix C:	Field Work Results
Appendix D	Laboratory Test Results

Report on Geotechnical Investigation and Acid Sulphate Soil (ASS) Assessment Proposed Woolworths Development 923-935 Bourke Street, Waterloo

1. Introduction

This report presents the results of a geotechnical investigation and acid sulphate soil (ASS) assessment undertaken for a proposed mixed-use development located at 923-935 Bourke Street, Waterloo (the site). The assessment was commissioned by behalf of Fabcot Pty Ltd (Fabcot) and was undertaken in accordance with Douglas Partners Pty Ltd (DP) proposal SYD190724.P.002.Rev0 dated 1 August 2019.

It is understood that the proposed development will include the demolition of existing structures and construction of a multi-storey mixed-use development over a three-level basement. It is understood that a new Woolworths and BWS (liquor store) is to be incorporated into the development. Excavation for the basement is anticipated to extend to depths of about 9 m below existing surface levels. Locally, deeper excavation may be required for service trenches and crane pads. The investigation was carried out to provide information on the subsurface conditions for design and planning purposes.

The investigation included the drilling of six rock cored boreholes into the rock and three augured boreholes to the top of rock. Details of the field and laboratory testing are given in the report, together with comments on design and construction issues.

Arcadis Pty Ltd has previously prepared a Phase 2 Environmental Site Assessment report for the site, reference 10020729RP01, dated 31 May 2018.

DP has also prepared the following reports for the site, for due diligence purposes (for Fabcot) in relation to the purchase of the site:

- Geotechnical desktop study, reference 86864.00.R.001.Rev0, dated 23 July 2019. This geotechnical investigation report supersedes the geotechnical desktop study report; and
- Environmental Preliminary Site Investigation (PSI), reference 86864.00.R.002.Rev0.

2. Site Description

The site comprises a parallelogram shaped area of about 5,200 m², the general layout of which is shown on Drawing 1, Appendix B. At the time of DP's presence on site, single and two-storey commercial buildings with on-ground parking occupied the site. Currently the site is occupied by a crystal wholesaler, a textile wholesaler, a tyre shop, and various other retail / wholesale stores. Existing surface levels were observed be relatively flat across the site.

Based on a casual observation during the field work:

- The external brickwork of the commercial buildings on the site appeared to be in a relatively good condition; and
- The pavements within the site appeared to be in a fair condition with some signs of minor cracking evident.

The site is situated within an area developed for a variety of uses. A summary of the current land uses adjacent to the location of the proposed building (at the time of DP's presence on site) is given in Table 1.

Direction Relative to the Site	Land Use Description
North	McEvoy Street followed by a largely paved vacant block with an old derelict building. This block has been fenced off with signage indicating that the site has been approved for a multi-storey (high rise) building / complex. Given the size of the proposed development it is anticipated that this development will include a multi-level basement car park. McEvoy Street is a Roads and Maritime Services (RMS) asset.
East	Bourke Street followed by six to ten-storey mixed-use buildings over a probable multi-level basement car park. During DP's presence on site, access to the basement car park below these buildings was not possible. The extent and depth of these nearby basement car parks should be confirmed prior to final design.
South	Single and two-storey commercial building with on-ground parking adjoining the southern site boundary. Further to the south is a United Petroleum petrol station.
West	Young Street and further to the west single and two-storey commercial buildings with on-ground parking and a multi-storey residential building over a probable multi-level basement. During DP's presence on site, access to the basement car park below these buildings was not possible. The extent and depth of these nearby basement car parks should be confirmed prior to final design.

Table 1: Summary of Adjacent Land Use

3. Regional Geology and Hydrogeology

3.1 Geology

Reference to the Sydney 1:100,000 Geological Series Sheet indicates that the site is underlain by Quaternary sediments comprising fine to medium grained sands probably underlain by Hawkesbury Sandstone and / or Ashfield shale, which is mapped north (1.3 km) and the west (2 km) of the site. The elevation (Reduced Level) of the site is approximately 23 m above Australian Height Datum (AHD).

The investigation confirmed the geological mapping and encountered aeolian sediments and residual soils overlying sandstone. Ashfield Shale was not encountered in the boreholes.

3.2 Hydrogeology

The Botany Sand Beds, Botany Basin, NSW Northern, Southern and Western Zones Status Report No.2 prepared by the Department of Land and Water Conservation (DLWC) [GWMA018, March 2000] provides an overview of the Botany sand beds. The report indicates that there are two groundwater systems operating in the region, one being a deeper confined aquifer system in the fractured Triassic bedrock and a shallower unconfined to semi-confined system which is present within the unconsolidated sediments of the Botany sand beds. The saturated portion of the Botany sand beds is known as the Botany Sands Aquifer.

3.3 Acid Sulphate Soils and Salinity

Acid Sulphate Soil Risk Mapping by the NSW Department of Planning Industry and Environment identify the site to be within a 'Class 5' zone. ASS is typically not found in Class 5 areas and the site is only at risk of ASS from an environmental point of view if proposed works are within 500 m of a Class 1, 2, 3 or 4 'land' that is below RL 5 m AHD, and by which the groundwater table is likely to be lowered below RL 1 m AHD.

The results of the laboratory test results completed as part of the investigation indicate that ASS are not present at the site.

Water quality in the Botany Sand Aquifer is typically of low salinity (less than 150 uS/m) and pH varies between 4.3 - 8.9.

4. Field Work Methods

The field work for the investigation included:

- On-site electronic scanning for buried services at proposed borehole locations:
- Drilling of six boreholes (BH101 to BH106) using a tight access tracked drilling rig. The boreholes were initially hand dug to a depth of between 0.5 m and 1.0 m to clear the locations of any buried services and to remove any drilling obstructions (e.g. bricks) within the fill. The boreholes were then drilled onto the top of rock to a depth of between 5.5 m and 8.0 m using a combination of solid fight augers and wash boring, before being continued to depths of between 12.5 m and 14.3 m using NMLC-sized (51 mm) diamond core drilling equipment to obtain continuous core samples of the bedrock;
- Drilling of three additional 'companion' boreholes (BH101A, BH103A and BH104A) using a tight access tracked drilling rig in close proximity (within 0.5 m) to the original cored borehole locations (BH101, BH103 and BH104). The boreholes were drilled onto the top of rock using solid flight augers, with disturbed soil sampling at regular 1.0 m depth intervals for the purpose of collecting

samples for acid sulphate soil assessment. Logs for these three 'companion' boreholes are attached but were not used for interpretation of the geotechnical model (Section 8) within this report;

- Purging of drilling water in BH101 and groundwater level measurement in BH101 following purging;
- Measurement of groundwater levels in existing groundwater monitoring wells MW1, MW3 and MW6 installed by Arcadis at the site; and
- All boreholes were backfilled with drill spoil upon completion. The test locations are shown on Drawing 1 in Appendix B. The locations and reduced levels of three boreholes (BH104, BH105 and BH106) were measured using a high precision differential GPS unit that is accurate to within 0.1 m.

5. Field Work Results

The detailed borehole logs and rock core photographs are included in Appendix C, together with notes defining classifications methods and terms used to describe the soils and rock profile encountered.

5.1 Boreholes

The general sequence of subsurface materials encountered at the borehole locations, in increasing depth order, is summarised in Table 2. Discussion on the selection of the 'Units' is provided in Section 8.

Unit	Material	Depth Range to Top of Unit (m)	RL Range to Top of Unit (m AHD)	Thickness (m)	General Description
1	Fill	0	24.4 to 22.2	1.0 to 2.0	Typically sand fill that appeared generally poorly to moderately compacted. Across the eastern portion of the site, the fill comprised bricks and an existing second concrete slab (approximately 0.1 m thick) was encountered at about 1.0 m depth.
2	Sand / Clayey Sand (Aeolian Soil)	1.0 to 2.0	22.4 to 21.2	2.2 to 7.1	Typically fine to medium grained aeolian sand and clayey sand deposits, generally a loose condition.
3	Residual Soil	4.0 to 7.5	20.2 to 14.7	0.7 to 3.0	Typically very stiff to hard sandy clay and medium dense clayey sand with occasional medium and high strength ferruginised sandstone (i.e 'ironstone') bands.
4	VL & L Sandstone	5.5 to 8.2	18.74 to 14.0	0.6 to 2.1	Very low and low strength sandstone.
5	M & H Sandstone	6.1 to 9.6	16.9 to 12.7	3.1 to 6.9	Medium and high strength sandstone.

Table 2: Summary of the Subsurface Profile at Boreholes

Notes: VL = Very Low Strength, L = Low Strength, M = Medium Strength, H = High Strength

5.2 Groundwater

Groundwater was observed during auger drilling of all the boreholes. The essential use of water as a drilling fluid, during the coring of the boreholes, precluded any further groundwater observations. On completion of the drilling, BH101 was left open and purged dry of drilling fluids using a submersible pump. A groundwater measurement was made prior to backfilling of the open borehole.

Measurements of the groundwater level were also taken within the existing monitoring wells (MW1, MW3 and MW6) previously installed by others (Arcadis). The location of these wells is shown on Drawing 1 in Appendix B.

A summary of the measured groundwater levels is provided in Table 3

Location ID	Surface RL (m AHD)	Groundwater Depth (m)	Groundwater RL (m AHD)	Date Measured	Comments
BH101	24.4	5.13	19.3	27.08.2019	Measured 13 hours after being purged dry
BH101	24.4	5.5	18.9	26.08.2019	Free groundwater observed during auger drilling of the borehole
BH102	24.3	5.0	19.3	27.08.2019	Free groundwater observed during auger drilling of the borehole
BH103	24.4	5.0	19.4	27.08.2019	Free groundwater observed during auger drilling of the borehole
BH104	23.0	5.0	18.0	28.08.2019	Free groundwater observed during auger drilling of the borehole
BH105	22.5	5.0	17.5	28.08.2019	Free groundwater observed during auger drilling of the borehole
BH106	22.2	4.8	17.4	29.08.2019	Free groundwater observed during auger drilling of the borehole
MW1	24.5 [*]	4.5	20.0	26.08.2019	Measured in existing monitoring well
MW3	24.0 [*]	3.1	20.9	26.08.2019	Measured in existing monitoring well
MW6	22.5 [*]	4.6	18.5	26.08.2019	Measured in existing monitoring well

Table 3: Summary of Groundwater Measurements

*Surface RL of bore not available to DP; estimated from NSW government online mapping

It should be noted that groundwater levels are transient and that fluctuations may occur in response to climatic and season conditions.

Data loggers were installed within the three existing groundwater wells (MW1, MW3 and MW6) for long term monitoring of groundwater levels at the site at hourly intervals. Periodic site visits will be carried out to collect the monitoring data and a groundwater monitoring report with details of the recorded water levels will be provided in a separate report.

6. Laboratory Testing

Laboratory testing was undertaken on a selection samples, summarised as follows:

- One particle size distribution test; and
- Three samples (two soil and one groundwater) to determine soil and groundwater aggressiveness (pH, Electrical Conductivity, Chloride Ion Content, Sulphate Ion Content) for exposure classification of buried concrete and steel elements.

The results of the laboratory testing are included in Appendix D, with the results summarised in Table 4 and Table 5.

Table 4: Particle Size Distribution

Borehole	Depth	Gravel	Sand	Fine Grained	Soil Classification
ID	(m)	(%)	(%)	(%)	(AS1726-2017)
105	2.5-2.95	0	96	4	

Table 5: Summary of Chemical laboratory Test Results

Borehole	Material	Depth (m)	Conductivity (µS/cm)	рН	CI (PPM)	SO₄ (PPM)
MW3	Water	-	190	6.6	22	5
101	Sand	4.0 - 4.45	17	8.1	<10	<10
103	Fill	1.2 – 1.65	240	7.9	58	280

Notes: CI = Chloride ion concentration, SO₄ = Sulphate ion concentration, PPM = Parts Per Million

The point load test results on rock cores were tested in-house, with the results shown on the borehole logs in Appendix C, at the respective test depths.

7. Acid Sulphate Soils

The Acid Sulphate Soils Management Advisory Committee (ASSMAC) prepared an Acid Sulphate Soil Manual (August 1998) which includes guidelines for assessing Actual Acid Sulphate Soils (AASS) and Potential Acid Sulphate Soils (PASS). The current ASS screening and laboratory testing for this assessment was developed in general accordance with the ASSMAC Acid Sulphate Soil Manual.

Twenty-five samples of soil collected from the approximate four corners of the site (BH101A, BH103A, BH104A and BH106) were tested / screened in an external laboratory for preliminary signs of AASS and PASS. The screening involved measurement of the pH value of each soil sample after the addition of distilled water (pH_F). Hydrogen Peroxide was then added to oxidise the sample and the pH value (pH_{FOX}) was measured again after at least one hour. The results for the pH screening are presented in Table 6.

Develop	Danth	Matarial		Scree	ning Tests	
Borehole ID	Depth (m)	Material Description	Natural pH _F	Oxidised pH _{FOX}	Change in pH	Reaction
101A	0.0-0.1	Fill	7.2	6.3	0.90	Moderate
101A	1.1-1.2	Fill	10.6	7.2	3.40	Slight
101A	2.0-2.1	Sand	8.3	6.4	1.90	Moderate
101A	3.0-3.1	Sand	8.3	6.4	1.90	Slight
101A	4.0-4.1	Sand	8.3	6.3	2.00	Slight
101A	5.0-5.1	Sand	7.8	6.3	1.50	Slight
101A	6.0-6.1	Clayey Sand	7.2	6	1.20	Slight
103A	0.0-0.1	Fill	7.2	5.3	1.90	Moderate
103A	1.1-1.2	Fill	10.8	9.2	1.60	Very High
103A	2.0-2.1	Sand	8.0	4.2	3.80	Slight
103A	3.0-3.1	Sand	5.6	4.6	1.00	Slight
103A	4.0-4.1	Sandy Clay	4.9	2.7	2.20	Slight
103A	5.0-5.1	Sandy Clay	5.4	3.8 ¹	1.60	Slight
104A	0.0-0.1	Fill	7.1	5.8	1.30	Moderate
104A	1.1-1.2	Fill	7.1	6.5	0.60	Slight
104A	2.0-2.1	Sand	6.4	6.6	-0.20	Slight
104A	3.0-3.1	Sand	6.5	6.8	-0.30	Slight
104A	4.0-4.1	Sand	6.5	5.2	1.30	Slight
104A	5.0-5.1	Sandstone	6	5.3	0.70	Slight
106	0.0-0.1	Fill	6.5	4.7	1.80	High
106	1.0-1.45	Sand	7.5	6.2	1.30	Slight
106	2.5-2.95	Sand	8	6.3	1.70	Slight
106	4.0-4.45	Sand	7.6	6.3	1.30	Slight
106	5.5-5.95	Sand	7.3	6.2	1.10	Slight
106	7.0-7.45	Clayey Sand	6.1	3.8 ¹	2.30	Moderate
Action	n Criteria for Assessme		≤ 4	≤ 3.5	>1	-

Table 6: PASS & AASS Screening Results

Note:- yellow highlight are samples selected for chromium reducible sulfur testing

2.7 - red font exceeds action criteria

(1) pH_{FOX} value of 3.8 is technically above action criteria of 3.5, however given the test results indicate they are only marginally above the action criteria (of 3.5), samples were selected for chromium reducible sulfur testing

The screening test results were assessed for the possible presence of AASS or PASS and the need for 'further assessment' was based on the following guidance indicators specified in the ASSMAC Guidelines:

- pH_F ≤ 4 strongly indicates oxidation has occurred in the past and that AASS are likely to be present;
- pH_{FOX} < 3.5 **and** preferably one or more of the following strongly indicates the presence of PASS:
 - \circ A pH_{FOX} reading at least one pH unit below the corresponding pH_F; or

- o A strong reaction with peroxide; or
- Change in soil colour from grey tones to brown tones; or
- A release of sulphurous gases.

Based on the above, it is the following is noted

- All pH_F values were well above pH 4, indicating that AASS were not detected;
- Only one pH_{FOX} value was below pH 3.5, providing a positive indicator of PASS; and
- Two sample pH_{FOX} values were only marginally over pH 3.5, providing a marginal positive indicator of PASS.

All three samples providing a positive / marginal indicator of PASS were tested for a Chromium Suite (SCr) at Envirolab Services, a NATA registered laboratory for ASS testing. The results of the analysis are summarised in Table 7 and compared with the action criteria specified in ASSMAC (1998) Guidelines. Full laboratory reports are provided in Appendix D.

The results confirmed that the samples tested are not AASS or PASS.

Location No.	Depth (m)	Material Description	рН ксі ⁽¹⁾	Chromium Reducible Sulphur (%w/w)
103A	4.0-4.1	Sandy Clay	4.3	<0.005
103A	5.0-5.1	Sandy Clay	4.2	<0.005
106	7.0-7.45	Clayey Sand	4.1	<0.005
A stien On	:	Sand to Loamy Sands	< 4	0.03
Action Criteria* (1 to 1000 tonnes		Sandy loams to light clays	< 4	0.06
distu	urbed)	Medium to heavy Clays and silty clays	< 4	0.1

Table 7: Results of Laboratory Analysis for S_{cr}

Notes:

(1) $pH_{KCI} = Non-oxidised pH$

8. Proposed Development

Based on the preliminary information supplied by Fabcot it is understood that the proposed development will include the demolition of existing structures and construction of a multi-storey mixed-use development over a three-level basement. It is understood that a new Woolworths and BWS (liquor store) is to be incorporated into the development. Excavation for the basement is anticipated to extend to depths of about 9 m below existing surface levels. Locally, deeper excavation may be required for service trenches and crane pads. Given that no drawings were available at the time of writing this report, a bulk excavation level (BEL) of about RL 13 m AHD has been assumed for basement.

9. Geotechnical Model

The observed subsurface profile encountered at the boreholes has been grouped into five geotechnical units. Two geotechnical cross sections (Section A-A' and Section B-B') showing the interpreted subsurface profile between the borehole locations are shown on Drawings 2 and 3 in Appendix B, respectively. With respect to the interpreted geotechnical boundaries it is noted that the soil profile should be expected to vary away from and in between the boreholes.

The interpreted depth and RLs at the top of the various units at each test location is shown in Table 8. Reference should be made to the borehole logs for more detailed information and descriptions of the soil and rock profile. It was observed that the depth to top of rock was dipping downwards in a southwesterly direction, with the shallowest depth to rock encountered at the north-eastern corner (BH103, 4.2 m) of the site and deepest depth to rock at the south-western corner (BH106, 7.8 m) of the site.

Unit	Material	Depth [m] Reduced Level (m AHD) to Top of Each Unit					
		BH101	BH102	BH103	BH104	BH105	BH106
1	Fill	0.0	0.0	0.0	0.0	0.0	0.0
I	ГШ	24.4	24.3	24.4	23.0	22.5	22.2
	Sand / Clayey	2.0	2.0	2.0	1.1	1.1	1.0
2	Sand (Aeolian Soil)	22.4	22.3	22.4	21.9	21.4	21.2
3	Residual Soil	6.6	5.5	4.2	4.0	5.5	7.5
3		17.8	18.8	20.2	19.0	17.0	14.7
4	VL & L	N.E	N.E	5.7	5.5	7.0	8.2
4	Sandstone	IN.E	IN.E	18.7	17.5	15.5	14.0
5	M & H	9.1	8.5	7.8	6.1	8.1	9.6
5	Sandstone	15.4	15.9	16.6	16.9	14.4	12.7

Table 8: Summary of Geotechnical Model

Notes: : EL = Extremely Low Strength, VL = Very Low Strength, L = Low Strength, M = Medium Strength, H = High Strength N.E = Not Encountered

The groundwater measurements indicated a groundwater table at depths of about 3.1 m to 4.8 m (RL 20.9 m AHD to RL 17.4 m AHD). Groundwater levels will fluctuate with climatic conditions and may temporarily rise by at least 1 m (or more) following periods of prolonged rainfall. Data loggers were installed within the three existing groundwater wells (MW1, MW3 and MW6) for long term monitoring of groundwater levels at the site, at hourly intervals. Periodic site visits will be carried out to collect the monitoring data and a groundwater monitoring report with details of the recorded water levels will be provided in a separate report.

10. Comments

10.1 Geotechnical Issues

Some of the primary geotechnical issues that need to be considered for development are:

- Groundwater is shallow, and dewatering will be required for the construction of basement(s);
- Shoring walls will need to be designed to reduce inflow and control 'drawdown' of water levels on adjacent sites as this has the potential to cause settlement and damage to nearby structures;
- Excavation adjacent to McEvoy Street, which is an RMS asset;
- The shoring will need to be socketed into competent rock which can be problematic for some shoring systems and can result in 'decompression' and loosening of the surrounding soils;
- If cut-off walls into rock are successfully constructed to reduce inflow and drawdown of water levels, then it is technically feasible to construct a drained basement. This however will be subject to review and approval by both the Council and by Water NSW;
- Alternatively, a tanked basement could be constructed to reduce the need for long term collection and removal of groundwater 'upflow' through the excavated floor of the basement. A tanked basement will need to be designed for hydrostatic uplift pressures.

10.2 Dilapidation Surveys

Dilapidation surveys should be carried out on adjacent / existing buildings, pavements and infrastructure that may be affected by the excavation works. The dilapidation surveys should be undertaken before the commencement of any excavation work in order to document any existing defects so that claims for damage due to construction related activities can be accurately assessed.

10.3 Excavation Conditions

Based on the borehole logs, the proposed bulk excavation works are anticipated to extend through all the units outlined in Table 2. The excavatability of the materials that will be encountered during the bulk excavation works is summarised in Table 9. The detailed excavation for footings, services and side walls within low strength or stronger rock will generally require the use of a rotary rock saw or grinder, or hydraulic rock hammers.

The excavation rate that can be achieved, particularly within medium and high strength rock, varies considerably and is dependent upon the degree of jointing in the rock, the rock strength, and the type of machinery being used and the skill of the operator. It is suggested that bulk excavation tenderers be required to make their own assessment of the equipment required to carry out the work. Contractors may inspect the rock core samples at the DP office in West Ryde prior to submitting final tenders (rock cores are generally kept for 6 months after drilling unless longer holding times are requested).

Unit	Material	Material Strength	Excavatability
1, 2 & 3	Fill & Soil	Soil	Excavation using buckets of conventional earthmoving equipment and bulldozers. The presence of 'ironstone' (i.e. ferrugnised sandstone) bands of medium strength (or stronger) may necessitate rock hammering of residual soil and extremely weathered rock. Spoil will be saturated and difficult to handle.
4	VL & L Sandstone	Very Low and Low Strength Sandstone	The very low strength layers may be excavated using buckets of conventional earthmoving equipment, particularly if fitted with 'rock teeth'. Medium strength (or stronger) 'ironstone' bands may require localised rock
5	M & H Sandstone	Medium and High Strength Sandstone	 hammering, as described above. However, hard ripping using a large 'bulldozer' (such as a D9 or larger plant), or excavators fitted with either ripping tynes or rock hammers will generally be required for removal of low strength rock or stronger. Rock hammers or saws / grinders are generally required for effective excavation of slightly fractured and unbroken rock. Some of the unbroken, high strength rock may be effectively 'unrippable' with very low productivity.

Table 9: Summary of Soil and Rock Excavatability

As noted above, the soil materials excavated below the water table will be saturated even after dewatering operations. Due consideration should be given to handling such 'water logged' material and whether progressive spreading and drying of the soil prior to removal is feasible.

10.4 Vibrations

During excavation, it will be necessary to use appropriate methods and equipment to keep ground vibrations at adjacent buildings and structures within acceptable limits. The level of acceptable vibration is dependent on various factors including the type of structure (e.g. reinforced concrete or brick structures etc.), its structural condition, the frequency range of vibrations produced by the construction equipment, the natural frequency of the structure and the vibration transmitting medium.

Ground vibration can be strongly perceptible to humans at levels above 2.5 mm/s vector sum peak particle velocity (VSPPV). This is generally much lower than the vibration levels required to cause structural damage to buildings. The Australian Standard AS2670.2-1990 "Evaluation of human exposure to whole-body vibrations – continuous and shock induced vibrations in buildings (1-80 Hz)" indicates an acceptable day time limit of 8 mm/s VSPPV for human comfort.

Some of the adjacent buildings are most likely supported on high level footings founded on loose sand. Vibrations have the potential to induce settlement of loose sands which may result in damage to adjacent buildings. For this reason, it is suggested that a maximum PPV of 3 mm/s (applicable at the foundation level of existing buildings) be provisionally employed at this site for both architectural and human comfort considerations. A higher limit of up to 8 mm/s may be adopted for buildings founded on dense sand or rock; however, this will be subject to further geotechnical review.

As the magnitude of vibration transmission is site specific, it is recommended that a vibration trial be undertaken during the use of heavy plant and particularly at the commencement of rock excavation. The trial may indicate that smaller or different types of excavation equipment should be used for bulk (or detailed) excavation purposes.

10.5 Disposal of Excavated Material

All excavated materials will need to be disposed of in accordance with the provisions of the current legislation and guidelines including the *Waste Classification Guidelines* (EPA, 2014). This includes fill and natural materials that may be removed from the site. Reference should be made to the preliminary in-situ waste classification provided in the Arcadis Phase 2 report for the site.

10.6 Acid Sulphate Soils

The results of laboratory testing indicate that actual and potential acid sulphate soils are not present at the site.

10.7 Dewatering and Tanking

10.7.1 General

The proposed bulk excavation will likely extend below the groundwater table. If dewatering on the site results in excessive drawdown (i.e. lowering of the water level) beneath surrounding sites, then this has potential to induce settlement beneath surrounding structures, which could cause damage. Existing groundwater contamination on the site, if applicable, should also be considered in the planning.

Given that bedrock will be encountered either above or short distance below the bulk excavation level (refer Drawing 2 and 3 in Appendix B), it is anticipated that basement construction would logically comprise the construction of a water-tight perimeter 'cut-off' wall extended below the base of the bulk excavation and socketed at least 2 m into competent, medium to high strength bedrock in order to construct a 'fully-tanked' basement structure. This option would be expected to significantly reduce seepage flows as seepage will only occur though the relatively low permeability medium to high strength rock below the basement floor, unless there are through-going open joints, faults or other defects in the rock that could act as a conduit for groundwater to enter the basement. This option may effectively reduce inflow rates into the basement to the extent that a drained basement may be justified without significant impact on groundwater levels on surrounding sites.

Further detailed groundwater modelling would be required to predict seepage rates and drawdown in the short and long term. This would also be required to assess whether a cut-off wall into rock below the bulk excavation may be used to allow the adoption of a drained basement. However, a drained basement will be subject to review and approval by Council and by Water NSW.

If a drained basement slab is not possible then a water-tight 'tanked' basement will be required for the permanent basement structure. A tanked basement would need to be designed to resist uplift forces associated with (hydrostatic) groundwater pressures.

10.7.2 Drawdown and Settlement

It is suggested that the design and construction of the basement should be carried out to limit the lowering of the water table (i.e. 'drawdown') on adjacent properties to less than 1.5 m. As a minimum this will require perimeter cut-off walls socketed into rock below the bulk excavation level to 'cut off' horizontal flows through rock into the excavation. By doing this, the only potential for groundwater inflows (into the basement) would be where continuous defects in the bedrock (e.g. joints, faults, etc.) provide a hydraulic connection between the water table outside the basement perimeter, with that inside the exposed base of the basement. Although unlikely, the presence of such 'though-going' defects in the underlying bedrock is very difficult to detect until bedrock is exposed within the bulk excavation level.

Further modelling may indicate that a tanked basement is required to reduce long term drawdown to acceptable levels.

During construction, it is recommended that drawdown outside the excavation in the vicinity of the adjacent properties should be monitored in general accordance with the following:

- Install standpipes in accessible areas on adjacent properties (or roads) to monitor groundwater drawdown levels during dewatering;
- Measure groundwater levels on a weekly basis for three weeks prior to operation of the dewatering system to establish pre-construction levels;
- Measure groundwater levels twice per day during the first two days of dewatering, and then daily during the first week of dewatering and weekly until decommissioning of the dewatering pumps, or until a lesser frequency is advised by the geotechnical engineer;
- The measured values are to be provided to the geotechnical engineer on the day of measurement for review;
- Where drawdown levels exceed a 'trigger level' (to be set) below pre-construction groundwater levels, the reason for the change in groundwater level should be investigated and measures put in place to rectify the exceedance. These measures could include reduction of pumping rates or suspension of dewatering.

Design of the dewatering system will need to give due consideration to drawdown effects on adjacent properties. The dewatering of the site should be carried out by a contractor with demonstrated experience in similar conditions.

10.7.3 Groundwater Disposal

The groundwater removed from the site will require disposal. It is considered that a dewatering management plan (which includes a groundwater quality assessment) will likely be required later as part of the DA submission.

10.8 Excavation Support

Shoring / retention will be required around the perimeter of the site. It will generally be necessary to install cut off walls into rock below bulk excavation level.

10.8.1 Shoring and Retaining Wall Systems

The final basement structure should incorporate a watertight shoring / retaining wall system around the basement perimeter.

The following options may be considered:

- Diaphragm walls may be used as the permanent basement wall. These walls are associated with lower risk but are relatively slow to construct and consequently more expensive. Diaphragm walls are constructed using a large grab, which excavates the soil and rock in panels which are supported by bentonite fluid. Each panel is then cast using concrete tremmied into the bentonite supported excavation, with reinforcement cages installed prior to the concrete being tremmied. The joints between the panels are sealed with a waterstop so that a completely water-tight wall is achieved.
- Interlocking secant pile wall (temporary and permanent) secant pile walls are typically formed by drilling alternate 'soft' grout or concrete piles and then installing 'hard' reinforced concrete piles by cutting into the previously drilled soft piles. This overlap typically ensures that piles are sealed, but even at relatively shallow depths, some misalignment can occur, and hence minor gaps appear in the wall. The potential for misalignment and therefore seepage and sand loss through gaps in deep secant pile walls is relatively high for basements of more than two level below ground. Drilling of piles into rock could also be problematic for secant piles and may result in 'decompression' of the surrounding sands, which can result in damage to adjacent buildings. The use of temporary segmental casing may be required to avoid issues associated with decompression.
- Cutter soil mix (CSM) wall (temporary) CSM walls involve blending or mixing of grout with the site soils in situ to form cement stabilised soil panels with universal column sections "plunged" into the "wet" panel at regular intervals along the wall to provide bending stiffness. Experience with the CSM walls has indicated that the mixing consistency, and consequently the permeability and durability of the wall need to be carefully considered, particularly within clayey soils and rock. In addition, the construction of these walls become significantly more difficult should deep variable fill and / or second concrete slabs (as indicated in the previous report completed by Arcadis) be present at the site. This option is unlikely to be suitable at the site and may not achieve an effective seal at the rock interface.

10.8.2 Temporary Batter Slopes and Vertical Rock Faces

As a watertight retaining wall system is required for the proposed development, temporary batters are not considered feasible for the sides of the bulk excavation, and excavation support will therefore be required. Nevertheless, in the course of carrying out bulk excavations inside a supported excavation perimeter, the need for temporary cut batters may arise as the bulk excavation proceeds, such as for temporary earth ramps and the like, for which suggested temporary maximum batter slopes for slopes not higher than 4 m (and above the water table) are given in Table 10. If surcharge loads are applied near the crest of the slope, then further specific geotechnical review and probably flatter batters or stabilisation using rock bolts or soil nails may be required.

Unit	Material	Maximum Temporary Batter Slope (H : V)
1, 2 & 3	Fill & Soil	1.5 : 1
4	VL & L Sandstone	0.5 : 1*
5	M & H Sandstone	Vertical*

Table 10: Recommended Batter Slo	bes for Exposed Material above the Water Table
----------------------------------	--

Note: VL = Very Low Strength, L = Low Strength, M = Medium Strength, H = High Strength

* Subject to jointing assessment by experienced Geotechnical Engineer/Engineering Geologist

Competent medium strength or stronger sandstone will generally be stable when cut vertically provided there are no adversely oriented joints or other defects present. Any vertical faces in rock for internal excavations (e.g. lift pits) should be inspected by an experienced geotechnical engineer or engineering geologist as the excavation progresses in depth intervals of no deeper than 1.5 m. The purpose of the inspections is to identify the extent of shotcrete face protection required and to check for the presence of any adverse defects daylighting into the excavation face which may require additional stabilisation measures (such as rock bolts and/or shotcrete).

10.8.3 Retaining Wall Design

The shoring will need to be supported by internal bracing and / or temporary 'tie-back' ground anchors to control deflections. It would be normal for the basement structure to prop the shoring / retaining walls for the permanent / long-term case.

Preferably, shoring walls should be in rock and at least 2 m below the bulk excavation level (possibly deeper to reduce water inflow and where rock is deeper below the BEL) in order to provide lateral restraint at the base of the excavation.

The preliminary design of shoring systems with one row of anchors may be based on the earth pressure coefficients provided in Table 11. 'Active' earth pressure coefficient (K_a) values may be used where some wall movement is acceptable, and 'at rest' earth pressure (K_o) values should be used where the wall movement needs to be reduced (e.g. adjacent to buildings along the southern site boundary)

It is recommended that prior to final design both the footing type and founding level of any adjoining buildings be confirmed to assess the need for underpinning of existing structures.

l la it	Meterial	Unit Weight	Earth Pressure Coefficient		Effective Cohesion	Effective Friction			
Unit	Material	(kN/m ³)	Active (K _a)	At Rest (K₀)	c' (kPa)	Angle (Degrees)			
1	Fill	20	0.4	0.6	0	25			
2	Sand / Clayey Sand (Aeolian Soil)	20	0.35	0.5	0	28			
3	Residual Soil	20	0.3	0.45	3	25			
4	VL & L Sandstone	24	0.15	0.2	20	35			
5	M & H Sandstone	24	0*	0*	100	40			

Table 11: Recommended Design Parameters for Shoring Systems

VL = Very Low Strength, L = Low Strength, M = Medium Strength, H = High Strength

* Subject to jointing assessment by experienced Geotechnical Engineer/Engineering Geologist

It is expected that more than one level of restraint will be required for the shoring walls. The design for lateral earth pressures where multiple rows of anchors or propping are used (i.e. two rows or more of anchors or props) may be based on a trapezoidal earth pressure distribution. The following earth pressure magnitudes are considered appropriate, where H is the height of soil and very low to low strength rock to be retained, in metres:

- 4H kPa, where some lateral movement is allowed; and
- 6H to 8H kPa, where lateral movements need to be limited (e.g. next to buildings and services).

In each case the maximum pressure generally acts over the central 60% of the wall, reducing to zero at the top and base of the wall.

The design of the shoring should allow for all surcharge loads, including building footings, inclined slopes behind the wall, traffic, site sheds, and construction related activities. Hydrostatic pressure acting on the shoring walls should also be considered in the design and allowance should be made for the water table rising by say 1 m to 1.5 m to account for possible long-term climatic variations.

10.8.4 Passive Resistance

Passive resistance for piles founded in rock below the base of the bulk excavation (including allowance for services and/or footings) may be based on the ultimate passive restraint values provided in Table 12. This ultimate value represents the pressure mobilised at high displacements and therefore it will be necessary to incorporate a factor of safety of at least two (or more) to limit wall movement. The top 0.5 m of the socket should be ignored, where exposed at bulk excavation level, due to possible disturbance and over-excavation.

Unit	Foundation Stratum	Maximum Allowable Passive Pressure (kPa)	Maximum Ultimate Passive Pressure (kPa)
4	VL & L Sandstone	250*	500*
5	M & H Sandstone	2,000*	4,000*

Table 12: Recommended Passive Resistance Values

VL = Very Low Strength, L = Low Strength, M = Medium Strength, H = High Strength

* Subject to jointing assessment by experienced Geotechnical Engineer/Engineering Geologist

Detailed design of shoring should preferably be carried out using WALLAP, PLAXIS or other accepted computer analysis programs capable of modelling progressive excavation and anchoring, and predicting potential lateral movements, stresses and bending moments. PLAXIS (or similar) would be required if it is necessary to assess ground movements on surrounding properties (e.g. McEvoy Street) as WALLAP will only assess wall movements.

10.8.5 Ground Anchors

The design of temporary and permanent ground anchors for the support of shoring systems may be carried out on the basis of the maximum bond stresses given in Table 13. The anchors should preferably have their bond length within the low and medium strength and stronger rock. Anchors taken to rock may need to be more steeply inclined in the approximate southern half of the site where the depth to competent rock was observed to be generally deeper than the northern half of the site (refer Drawing 2 and 3 in Appendix B).

Unit	Material Description	Maximum Allowable Bond Stress (kPa)	Maximum Ultimate Bond Stress (kPa)
4	VL & L Sandstone	100	200
5	M & H Sandstone	500	1,000

 Table 13: Recommended Maximum Bond Stresses for Rock Anchor Design

VL = Very Low Strength, L = Low Strength, M = Medium Strength, H = High Strength

The parameters given in Table 10 assume that the drilled holes are clean and adequately flushed. The anchors should be bonded behind a line drawn up at 33 degrees in sand and 60 degrees in rock from the base of the shoring wall or the top of free-standing medium strength or stronger rock, and "lift-off" tests should be carried out to confirm the anchor capacities. It is suggested that ground anchors should be proof loaded to 125% of the design Working load and locked-off at no higher than 80% of the Working load.

In normal circumstances the building will restrain the basement excavation over the long term and therefore ground anchors are expected to be temporary only. The use of permanent anchors would require careful attention to corrosion protection. Further advice on design and specification should be sought if permanent anchors are to be employed at this site.

It will be necessary to obtain permission from neighbouring landowners prior to installing anchors that will extend beyond the perimeter of the site. In addition, care should be taken to avoid damaging buried services and pipes, and possibly neighbouring piled footings, during anchor installation. Anchoring should only be carried out by an experienced contractor with demonstrated experience in similar ground conditions.

Vertical anchors for uplift support could also be designed using the parameters given in Table 13. The designer should check the cone-pull-out failure mechanism by assuming a 90-degree cone for the soil and rock.

10.9 Excavation Induced Ground Movement

10.9.1 RMS Infrastructure

McEvoy Street is a Roads and Maritime Services (RMS) owned asset. Reference should be made to the *RMS Geotechnical Technical Direction 2012/001 dated April 2012*, which outlines the requirements for excavations adjacent to RMS infrastructure and includes the level of geotechnical investigation required, dilapidation surveying, instrumentation and monitoring during construction, trigger levels and contingency plans.

A Geotechnical Impact Assessment (GIA), i.e. numerical modelling, will typically be required as part of the DA application (imposed by RMS). The purpose of the GIA is to assess the likely amount of excavation induced ground movement as a result of the proposed excavation at the RMS assets and surrounding strucures (where required). Such numerical modelling could be carried out using commercially available software such as Plaxis 2D.

Precise survey and / or inclinometer monitoring of excavation faces and nearby buildings/ structures should be carried out to assess vertical and horizontal movements during the excavation. The survey and/ or inclinometer monitoring should commence prior to excavation to provide a baseline and should continue every 1.5 m drop of the excavation. If deflections show an increase in the rate of movement or exceed the predicted movements, then the structural engineer and geotechnical engineer should be contacted for immediate review.

A geotechnical monitoring plan (GMP) will also be typically required by RMS prior to construction for this site. A GMP outlines how to monitor excavation induced movements and vibrations (if applicable) as a result of the proposed development and what to do if any prescribed limits are exceeded. In addition, the GMP typically includes hold points at key stages of construction works.

DP can assist with the numerical analysis, preparation of a geotechnical monitoring plan and on-going inclinometer surveying during the construction stage if required.

10.10 Foundations

It is expected Unit 5 medium to high and high strength sandstone will be exposed across most of the bulk excavation for the basement. In the approximate south-western corner of the site it is anticipated that Unit 3 residual soils and Unit 4 very and low strength sandstone is likely to be exposed (refer Drawing 3 in Appendix B).

It is recommended that all footings for the structures be uniformly founded in Unit 5 medium and high strength rock in order to provide uniform support of the proposed structures and to reduce the potential for differential settlements. Where rock is close to design level and subject to loads and settlement tolerances, shallow pad or strip footings founded in rock could be used. Alternatively, piles founded (i.e. socketed) in stronger rock could be used to reach competent rock and/ or to achieve higher capacities.

Footings may be designed using the values given in Table 14. For piles, if required, shaft adhesion values for uplift (tension) may be taken as being equal to 70% of the shaft adhesion values for compression in Table 14.

			Maximum Allowable Pressure (Serviceability)		Maximum Ultimate Pressure (Ultimate)		
Unit	Foundation Stratum	End Bearing (kPa) ⁽¹⁾	Shaft Adhesion (Compression) (kPa) ⁽¹⁾	End Bearing (kPa) ⁽¹⁾	Shaft Adhesion (Compression) (kPa) ⁽¹⁾	Young's Modulus E (MPa)	
4	VL & L Sandstone	1,200	100	4,000	200	100	
5	M & H Sandstone	6,000 ⁽²⁾	600	60,000	1,200	1,000	

Table 14: Recommended Design Parameters for Foundation Design

Notes:

(1) End bearing and shaft adhesion values presume adequate shaft roughness / cleanliness and base cleanliness

(2) Spoon testing in at least one-third of the footings is required if this value is adopted

Higher allowable end bearing pressures of about 10,000 kPa could be adopted in the Unit 5 medium and high and high strength (or stronger) sandstone provided spoon testing is completed in all of the footings. Spoon testing involves drilling a 50 mm diameter hole below the base of the footing, to a depth of 1.5 times the footing width, followed by testing to check for the presence of weak/clay bands. If weak seams are detected, then footings may need to be taken deeper to reach suitable foundation material.

If spoon testing is not carried out (or is not preferred) for shallow footings, then a maximum allowable end bearing pressure of 3,500 kPa must be adopted for the Unit 5 medium and high strength sandstone.

Footings (i.e. pads or piles) founded on the edge or within the zone of influence of vertical rock excavations, would be subject to assessment of jointing in the rock. A scenario where this could occur would be if for example a stepped basement design were to be adopted at a future date.

Generally, the allowable bearing pressure for footings founded near the edge of vertical rock excavations on Unit 5 medium and high strength sandstone (or stronger) should be limited to about 1,000 kPa. If deeper excavation exposes adverse jointing in the rock below the footings, then stabilisation using rock bolts/anchors and or underpinning may be required. Alternatively, the footings may be taken down below the zone of influence of a vertical cut face, in which case there would be no need to reduce the bearing pressure.

Foundations proportioned on the basis of the allowable bearing pressure in Table 14 would be expected to experience total settlements of less than 1% of the footing width under the applied working load, with differential settlements between adjacent columns expected to be less than half of this value.

Footings designed using ultimate values and Limit State Design will need to consider serviceability which usually governs the design in this case. For pile design, a basic geotechnical strength reduction factor, Φ_{gb} , of about 0.52 (or possibly higher) calculated from Table 4.3.2 (A, B, and C) of AS2159-2009: Piling Design and Installation, is considered feasible. However, the structural engineer will need to make their own assessment with the final (Φ_{gb}) number being dependent on the design and installation method (and associated risk rating) adopted by the structural engineer. A Φ_{gb} of 0.4 is required if pile load testing is not carried out and the ARR is 2.5 or greater

All footings should be inspected by a geotechnical engineer to confirm that foundation conditions are suitable for the design parameters.

10.11 Seismic Design

In accordance with the Earthquake Loading Standard, AS1170.4, 2007, a hazard factor (z) of 0.08 and a site sub-soil class of C_{e} , is applicable to the site.

10.12 Soil and Groundwater Aggressivity

The assessment of soil and groundwater aggressivity has been made with reference to the requirements for concrete and steel presented in AS 2159-2009, the Australian Standard for pile design and construction.

Based on the geo-chemical soil test types listed in Table 5, with reference to the requirements for concrete and steel piles presented in AS 2159-2009, an exposure classification of the tested soil samples is provided in Table 15.

Borehole ID	Depth (m)	Material	Aggressivity to Concrete	Aggressivity to Steel	
MW3	-	Water	Mild	Non-Aggressive	
101	4.0 - 4.45	Sand	Mild	Non-Aggressive	
103	1.2 – 1.65	Fill	Mild	Mild	
			Very Severe		
	A		Severe		
	Aggressivit		Moderate		
as per AS 2159-2009			Mild		
			Non-Aggressive		

Table 15: Aggressivity Results

11. Further Geotechnical Input

Below is a summary of the recommended additional works that should be carried out:

- Dilapidation surveys;
- Waste classification of all material to be excavated and transported off site;
- Groundwater modelling to assess drawdown and pumping rates;
- Preparation of a dewatering management plan;
- Numerical analysis of shoring wall adjacent to McEvoy Street (RMS asset) to satisfy RMS requirement;
- Preparation of a geotechnical monitoring plan (GMP) to satisfy RMS requirements;
- Inclinometer installation and monitoring during construction to satisfy RMS requirements; and
- Footing inspections during construction.

It is recommended that a meeting be held after the initial design has been completed to confirm that these recommendations have been interpreted correctly.

12. Limitations

Douglas Partners (DP) has prepared this report for this project at 923-935 Bourke Street, Waterloo (the site) in accordance with DP's proposal SYD190724.P.001.Rev0 dated 1 August 2019 and acceptance received from Michelle Chiu on behalf of Fabcot Pty Ltd dated 16 August 2019. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Fabcot Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

DP's advice is based upon the conditions encountered during previous investigations completed by DP near the site. The geological model provided in the report is only indicative of the anticipated subsurface conditions at the site. Sub-surface conditions can change abruptly due to variable geological processes and as a result of human influences, particularly as some of DP's field testing nearby was undertaken many years ago.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials. Reference should be made to the previously prepared Phase 2 Environmental Site Assessment report for the site prepared by Arcadis Pty Ltd, reference 10020729RP01, dated 31 May 2018

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the geotechnical components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About This Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

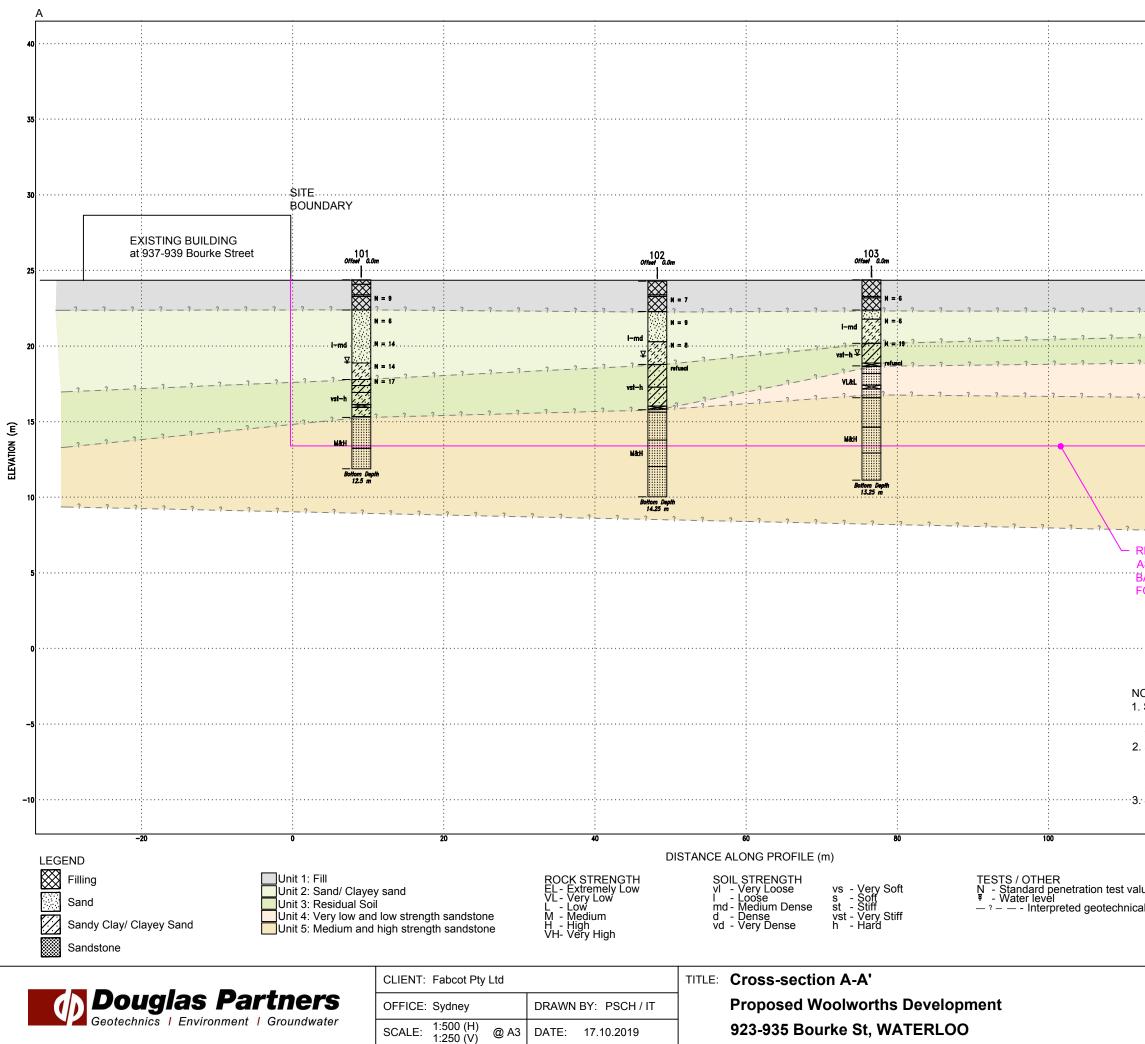
Site Inspection

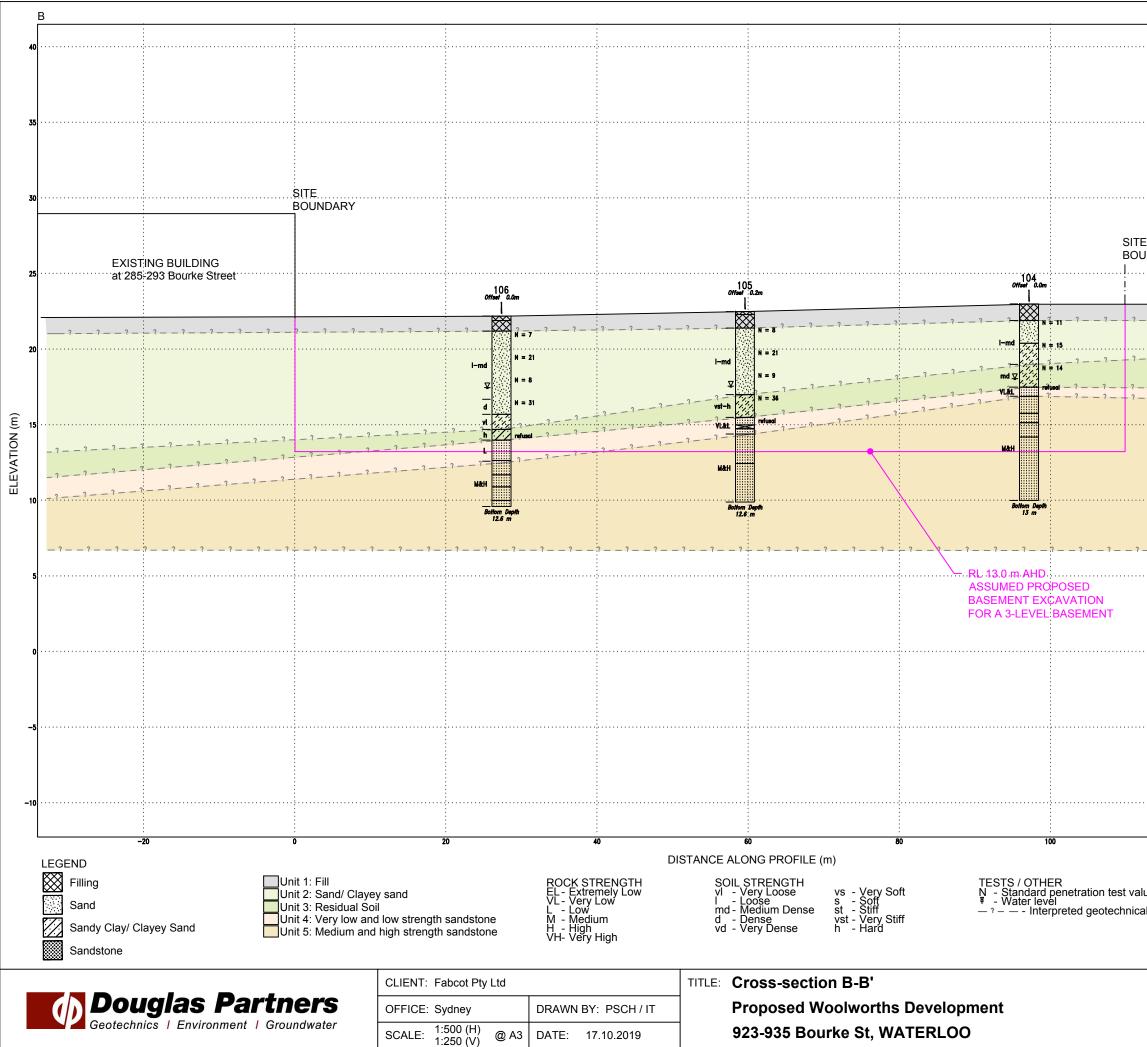
The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix B

Drawings

NOTE: 1: Base image from Nearmap.com


(Dated 1.9.2019)2: Test locations are approximate only and are shown with reference to existing features.


CLIENT: Fabcot Pty Ltd		ΤI
OFFICE: Sydney	DRAWN BY: PSCH / IT	
SCALE: 1:500 @ A3	DATE: 17.10.2019	

TITLE:	Site Plan
	Proposed Woolworths Development
	•
	923-935 Bourke Street, WATERLOO

	A'
	35
	30
SITE	
BOUNDÁRY	
McEVOY	
STREET	23
Unit 1: Fill	
Unit 2: Sand/ Clayey san	Id
Unit 3: Residual Soil	20
Unit 4: Very low and low	
Unit 5: Medium and high	strength sandstone
	10
- ? - ~ ? - ~ ? - ~ ? - ? -	3 7 7 7
ASSUMED PROPOSED	5
OR A 3-LEVEL BASEMENT	
OTE:	
Subsurface conditions are accurate locations only and variations may or	•
the borehole locations.	
Strata layers and rock classification generalised and each layer can inclu	•
of lower or higher strength rock and	
of less or more fractured rock. Summary logs included only and she	ould be read in
conjunction with detailed logs.	
120	140
ue	0 10
al boundary (see notes)	
	zontal Scale (metres)
Ver	tical Exaggeration = 2.0
	PROJECT No: 86864.00
	DRAWING No: 2
	REVISION: 0

		В	3'
			40
			35
			30
Ξ			
JNDARY			25
	McEVOY STREET		2.0
	Unit 1: Fill	- ? ? ?	
	Unit 2: Sand/ Clayey san		20
	-i - i - i - i - i - i - i - i Unit 3: Residual Soil		20
	Unit 4: Very low and low	strength sandstone	
	_ , , , , , , ,		15
			13
	Lipit 5: Modium and high	strongth conditions	
	Unit 5: Medium and high		10
			10
? ? .		_ ? ? ? ? ?	
			5
			5
			0
			U
NOTE:			
	urface conditions are acc ons only and variations n		-5
the b	orehole locations. a layers and rock classific		-5
gene	ralised and each layer ca ver or higher strength roc	n include bands	
of les	s or more fractured rock. nary logs included only a		-10
	nction with detailed logs.		-10
1:	20	140	
ue		0 10 I I	
al boundary		zontal Scale (metres)	
		tical Exaggeration = 2.0	
		PROJECT No: 86864.00	
			,
		DRAWING No: 3 REVISION: 0	

Appendix C

Field Work Results

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane		
Cs	Clay seam		
Cv	Cleavage		
Cz	Crushed zone		
Ds	Decomposed seam		
F	Fault		
J	Joint		
Lam	Lamination		
Pt	Parting		
Sz	Sheared Zone		
V	Vein		

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean	
со	coating	
he	healed	
inf	infilled	
stn	stained	
ti	tight	
vn	veneer	

Coating Descriptor

ca	calcite	
cbs	carbonaceous	
cly	clay	
fe	iron oxide	
mn	manganese	
slt	silty	

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished	
ro	rough	
sl	slickensided	
sm	smooth	
vr	verv rouah	

Other

fg	fragmented	
bnd	band	
qtz	quartz	

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

·____.

Metamorphic Rocks

 >
 >
 >

 >
 >
 >
 >

 +
 +
 +
 +
 +

 ·
 ·
 ·
 ·
 ·

 ·
 ·
 ·
 ·
 ·

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726-1993, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)	
Boulder	>200	
Cobble	63 - 200	
Gravel	2.36 - 63	
Sand	0.075 - 2.36	
Silt	0.002 - 0.075	
Clay	<0.002	

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

s Pai

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 2007. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approximate Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and longer sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = $\frac{\text{cumulative length of 'sound' core sections} \ge 100 \text{ mm long}}{\text{total drilled length of section being assessed}}$

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

SURFACE LEVEL: 24.4 AHD **EASTING:** 334385.8 **NORTHING:** 6247315.2 **DIP/AZIMUTH:** 90°/-- BORE No: 101 PROJECT No: 86864.00 DATE: 26/8/2019 SHEET 1 OF 2

	_	Description	Degree of Weathering ⊖	Rock Strength	Fracture	Discontinuities			-	In Situ Testing
	Depth (m)	of	Weathering U	Very Low Medium High Ker High Kater	Spacing (m)	B - Bedding J - Joint	Type	ore : %	RQD %	Test Results &
	()	Strata	G G	Ex Low Very Low Medium Very High Ex High	0.05	S - Shear F - Fault	٦ _۲	S S	R0%	& Comments
***	0.3	FILL/SAND SP: fine to medium grained, brown, with 30% bricks, moist, appears generally moderately compacted FILL/SAND SP: fine to medium grained, grey-brown, moist, appears generally moderately locompacted						-		245
	2 2.0	CONCRETE: 100 mm FILL/SAND SP: fine to medium grained, grey-brown, moist, appears generally moderately					S	-		2,4,5 N = 9
1-		SAND SP: medium grained, orange-brown, moist, loose, aeolian deposits					s	-		2,2,4
	3									N = 6
	- 4	From 3.5 m: yellow-pale brown, medium dense					S			2,6,8 N = 14
-	5 5.5	Clayey SAND CS: fine to medium grained, pale grey and red, low plasticity clay, with 30% ferruginised seams, moist, medium dense, aeolian deposits					S	-		4,7,7 N = 14
	6.6 7 7.0	plasticity, pale grey and red, fine to medium sand, wet, very stiff,					s	-		4,7,10 N = 17
	7.45 8	extremely weathered material Sandy CLAY SC: medium plasticity, pale grey and red, fine to medium sand, with 10-20% high strength iron-cemented bands, moist, very stiff, extremely weathered material					с	100	0	
	8.25 8.45 ^{.9} 9.05	grained, pale grey, low plasticity clay, wet, medium dense, extremely weathered material Clayey SAND SC: fine to medium grained pale grey low plasticity				8.25m: CORE LOSS: 200mm 9.25m: B,0-5°,un,ro,cln	С	91	73	PL(A) = 1.7 PL(A) = 1.4
-						9.6m: B,5-10°,un,ro,cln				

RIG: Geo205

CLIENT:

PROJECT:

LOCATION:

Fabcot Pty Ltd

Proposed Woolworths Development

923-935 Bourke Street, Waterloo

DRILLER: GM

LOGGED: JN

CASING: HW 6.0m, HQ 7.0m

 TYPE OF BORING:
 Hand dug to 0.5m, Solid Flight Auger (TC-Bit) to 5.95m, Rotary (mud) to 7.0m, NMLC-coring to 12.5m

 WATER OBSERVATIONS:
 Free groundwater observed at 5.5m whilst augering; borehole pumped dry on completion on 26/8/19 at 18:00hrs, Water

 REMARKS:
 Location coord fixed and the first state of the

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 Pliston sample

 B Bulk sample
 Piston sample
 Pliston sample

 LK Block sample
 U, Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C Core drilling
 W Water sample
 pp

 D Disturbed sample
 V Water sample
 pp

 E Environmental sample
 W Water level
 V Shear vane (kPa)

SURFACE LEVEL: 24.4 AHD **EASTING:** 334385.8 **NORTHING:** 6247315.2 **DIP/AZIMUTH:** 90°/-- BORE No: 101 PROJECT No: 86864.00 DATE: 26/8/2019 SHEET 2 OF 2

\square		Description	Degree of Weathering ﷺ ≩ ≩ ਨੇ ∞ ੴ	,	Rock	Fracture	Discontinuities	Sa	amplii	ng & I	In Situ Testing
R	Depth	of	vveathering		Very High Kery Low Very High Ex High Ex High Ex High Nater	Spacing	B - Bedding J - Joint				
	(m)	Strata			Very Low Very High Low 0.01	0.05 0.10 0.10 0.10 0.00 0.00	S - Shear F - Fault	Type	C O	RQD %	& Commonto
\square		SANDSTONE: medium to coarse	M H M S L L .	<u>ش</u> ::::	<u>ة شخا±اغاكاكام،</u>						Comments
- 1	- 11	grained, orange-brown, massive, high strength, slightly weathered, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>					10.6m: B,0°,pl,ro,fe stn	С	91	73	PL(A) = 1.7
	- 12	SANDSTONE: medium to coarse grained, pale grey, <10% siltstone laminations, high strength, fresh, slightly fractured, Hawkesbury Sandstone					11.75m: B,0°,pl,ro,cln	С	100	100	PL(A) = 1.1
-12	12.5					┢═╤╝	- 12.45m: B.0° pl ro.clp.				PL(A) = 1
	- 13	Bore discontinued at 12.5m					<u>12.45m: B,0°,pl,ro,cln</u>				
10	- 15										
	- 16										
	- 17				iiiiii						
	- 18										
	- 19				iiiiii						

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: HW 6.0m, HQ 7.0m

 TYPE OF BORING:
 Hand dug to 0.5m, Solid Flight Auger (TC-Bit) to 5.95m, Rotary (mud) to 7.0m, NMLC-coring to 12.5m

 WATER OBSERVATIONS:
 Free groundwater observed at 5.5m whilst augering; borehole pumped dry on completion on 26/8/19 at 18:00hrs, Water

 REMARKS:
 Location coord fixed matching spoil.

	SAMI	PLING	3 & IN SITU TESTING	LEGEND	
A A	uger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B BI	ulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BLK BI	lock sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C Cr	ore drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D Di	isturbed sample	⊳	Water seep	S Standard penetration test	
E Er	nvironmental sample	¥	Water level	V Shear vane (kPa)	🛛 🔚 🔚 Geotechnics I Environment I Groundwate

SURFACE LEVEL: 24.3 AHD **EASTING:** 334411.9 **NORTHING:** 6247344.4 **DIP/AZIMUTH:** 90°/-- BORE No: 102 PROJECT No: 86864.00 DATE: 27/8/2019 SHEET 1 OF 2

	Derth	Description	Degree of Weathering	ji _	Rock Strength ត្រ	Fracture Spacing	Discontinuities			-	n Situ Testing
뵈	Depth (m)	of		Log	Ex Low Very Low Low Medium High Very High Ex High Ex High	(m)	B - Bedding J - Joint	Type	Core Rec. %	ן גר	Test Results &
	``	Strata	H M M M M M M M M M M M M M M M M M M M	G		0.05	S - Shear F - Fault	Ţ	US 8	ř	Comments
24	0.9	FILL/SAND SP: medium grained, brown, with 30% bricks, moist, appears generally moderately compacted		\bigotimes							
F	1 1.0	CONCRETE: 100 mm									0.0.4
		FILL/SAND SP: fine to medium grained, grey, moist, appears generally moderately compacted From 1.15m: brown		\bigotimes				S	-		2,3,4 N = 7
22	2 2.0	SAND SP: fine to medium grained, orange-brown, moist, loose, aeolian deposits		\sim							
	3	From 2.7m: brown-dark brown						s	-		4,4,5 N = 9
21											
20 1 1	4 4.0	Clayey SAND CS: fine to medium grained, pale grey and red, low plasticity clay, moist, loose, aeolian deposits						S			3,3,5 N = 8
19	5				↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓						
-	6	Sandy CLAY CI: medium plasticity, pale grey, fine to medium sand, wet, hard, extremely weathered material						s	-		7,20,20/130B refusal
1	7 7.0	Sandy Clay CI: medium plasticity, pale grey and red, fine to medium sand, with 10-20% medium strength iron-cemented bands, wet, hard, extremely weathered material						С	100	0	PL(A) = 0.4
F	8			<u>//</u>							
16	8.25 8.45 8.65	SANDSTONE: medium to coarse					8.25m: CORE LOSS: 200mm				PL(A) = 0.7
15	9	Medium strength, moderately weathered, Hawkesbury Sandstone SANDSTONE: fine to medium grained, pale grey, low and medium strength, moderately to slightly weathered, fractured then					9m: J,45-80°,un,ro,fe stn	С	91	70	
-		slightly fractured, Hawkesbury Sandstone									PL(A) = 0.1

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: HW 6.0m

TYPE OF BORING: Hand dug to 1.0m, Solid Flight Auger (TC-Bit) 7.0m, NMLC-coring to 14.25m

WATER OBSERVATIONS: Free groundwater observed at 5.0m whilst augering

	SAM	PLIN	3 & IN SITU TESTING	LEGEND	1
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BL	< Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test (\$50) (MPa	Douglas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ţ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 24.3 AHD **EASTING:** 334411.9 **NORTHING:** 6247344.4 **DIP/AZIMUTH:** 90°/-- BORE No: 102 PROJECT No: 86864.00 DATE: 27/8/2019 SHEET 2 OF 2

D	Description	Degree of Weathering	2 2	Rock Strength ត្រ	Fracture	Discontinuities	Sa	mpli	ng &	In Situ Testing
Depth (m)	of	Degree of Weathering ≞ ≩ ≩ § ∞ ∰	Log	Very Low Very Low Low Nedium Nedium Kery High Ex High Ex High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	`ore ∛c. %	ROD %	Test Results &
	Strata	M H M S L L L L L L L L L L L L L L L L L L		Very Very Very Very Very	0.00		-	0 %	Ľ.	Comments
- - - 10.5	SANDSTONE: medium to coarse	 				∖ 10.47m: B,5°,pl,ro,fe stn	с	91	70	PL(A) = 0.5
- - - - - - - - - - - - - - - - - - -	grained, pale grey and orange, massive, high strength, slightly weathered, slightly fractured, Hawkesbury Sandstone					10.55m: J,45°,pl,ro,fe stn 10.66m: J,10-45°,un,ro,fe stn 10.78m: DS, 50mm 11.36m: B,0°,pl,ro,cln 11.51m: B,0°,pl,ro,cln	С	100	100	PL(A) = 1.5
- 12 [
12.25 	SANDSTONE: medium to coarse grained, pale grey, with <20% siltstone laminations, high strength, fresh, slightly fractured, Hawkesbury Sandstone					12.42m: B,5°,pl,ro,cln 12.5m: B,5°,pl,ro,cln 12.66m: B,5°,pl,ro,cln				PL(A) = 1.1 PL(A) = 1
- - -						13.18m: B,5°,pl,ro,cln	с	100	100	1 2009 - 1
- - - - 14						13.67m: CS,10mm				
14.25	Bore discontinued at 14.25m									
- 15										
- 16										
- 17 										
- 18 18 										
- 19 - 19 										
-										

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: HW 6.0m

TYPE OF BORING: Hand dug to 1.0m, Solid Flight Auger (TC-Bit) 7.0m, NMLC-coring to 14.25m

WATER OBSERVATIONS: Free groundwater observed at 5.0m whilst augering

	SAMF	PLING	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		
BLł	< Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test Is(50) (MPa)	1.1	Douglas Partners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
Е	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

BORE: 102	PROJECT:	WATERLOO	AUGUST 2019
Douglas Par Geotechnics Environment	Groundwater	Project No: 86864.00 BH ID: 102 Depth (10074250) Core Box No: 2-2)	
12	ENDE	14.250	
		0 – 14.25 m	

SURFACE LEVEL: 24.4 AHD **EASTING:** 334430.8 **NORTHING:** 6247365.5 **DIP/AZIMUTH:** 90°/-- BORE No: 103 PROJECT No: 86864.00 DATE: 27/8 - 28/7/2019 SHEET 1 OF 2

		Description	Degree of Weathering ⊡	Rock Strength	r.	Fracture	Discontinuities		-	-	n Situ Testing
뵈	Depth (m)	of	Weathering		Vate	Spacing (m)	B - Bedding J - Joint	Type	re . %	RQD %	Test Results
	(,	Strata	Ū Ers sev Ers	Ex Low Very Low Medium High Very High Ex High		0.05 0.10 1.00	S - Shear F - Fault	Ţ	Rec	R 0 %	& Comments
24		FILL/SAND SP: medium grained, grey-brown, with 30% bricks, moist, appears generally moderately compacted									
ŀ	-1 1.1 1.2	CONCRETE: 100 mm			ľ			s			2,3,3
23		FILL/SAND SP: fine to medium grained, dark grey, moist, appears generally moderately compacted									N = 6
22	-2 2.0-	SAND SP: medium grained, yellow, moist, medium dense, aeolian deposits		×							
-	2.6 - - 3	Clayey SAND CS: fine to medium grained, pale grey, low plasticity clay, moist, loose, aeolian deposits						S			2,2,4 N = 6
21	- 4										
20	4.2 -	Sandy CLAY SC: medium plasticity, pale grey, fine to medium sand, moist, very stiff,						S			5,8,11 N = 19
-	- 5	extremely weathered material			▼ 						
19	5.5 - 5.73	SANDSTONE: fine to medium			1		5.5m: CORE LOSS: 230mm	<u>s</u>			5/10,B refusal PL(A) = 0.2
18	- 6 6.2 -	grained, orange-brown, thinly bedded, low strength with medium strength sandstone bands, moderately weathered, fractured, Hawkesbury Sandstone					6.15m: CS,130mm 6.35m: CS,100mm 6.55m: CS,310mm	С	84	0	PL(A) = 0.4
+	- 7 6.97	grained, pale grey and brown, thinly bedded, medium strength with extremely weathed material and			ļ		\6.94m: CS,30mm 6.97m: CORE LOSS:				
17	7.22	medium strength sandstone bands, highly weathered, fractured, Hawkesbury Sandstone SANDSTONE: fine to medium			-		250mm 7.27m: CZ,20mm 7.35m: B,5°,pl,ro,fe stn 7.6m: DS,50mm 7.65-8.15m:				PL(A) = 0.2
16	- 8	grained, pale grey and brown, thinly bedded, low strength, moderately weathered, fractured, Hawkesbury Sandstone SANDSTONE: medium grained, pale grey and orange, massive, medium strength, slightly					J60-90°,un,ro,cln 8.43m: B,0-10°,un,ro,fe \$tn 8.6m: J,60°,pl,ro,cln	с	92	77	PL(A) = 0.8
15	- 9	weathered, slightly fractúred, Hawkesbury Sandstone									PL(A) = 0.6
ł	9.75						9.67m: CS,30mm				

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: HW 5.5m, HQ 5.5m

TYPE OF BORING: Hand dug to 1.0m, Solid Flight Auger (TC-Bit) to 5.5m, NMLC-coring to 13.25m

WATER OBSERVATIONS: Free groundwater observed at 5.0m whilst augering

	SAMF	PLINO	3 & IN SITU TESTING	LEGEND]
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	A Dollolas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

SURFACE LEVEL: 24.4 AHD **EASTING:** 334430.8 **NORTHING:** 6247365.5 **DIP/AZIMUTH:** 90°/-- BORE No: 103 PROJECT No: 86864.00 DATE: 27/8 - 28/7/2019 SHEET 2 OF 2

_											
		Description	Degree of Weathering ≧ ≩ ≩ ỗ ؽ ੯	<u>.</u>	Rock Strength	Fracture	Discontinuities			-	In Situ Testing
님	Depth (m)	of	weathering	aph og		D Spacing (m)	B - Bedding J - Joint	e	e %	Δ	Test Results
	(11)	Strata	HWW MWV FSW	ų G	Strength Active Netry High Netry High Netry High Netry High Netry High Netry High Netry High Netry High Netry	0.05 0.10 0.10 0.10 0.10	S - Shear F - Fault	Type	C C	RQD %	& Comments
	- 11	SANDSTONE: medium to coarse grained, pale grey and orange, massive, high strength, slightly weathered, slightly fractured, Hawkesbury Sandstone (continued)					10.1m: B,10°,pl,ro,cln 10.18m: B,10°,pl,ro,cln 10.52m: B,10°,pl,ro,cln				PL(A) = 1.5
13	11.45	SANDSTONE: medium to coarse grained, pale grey, cross bedded with <10% siltstone laminations,					11.25m: B,0-5°,un,ro,cln	с	100	100	PL(A) = 1.2
12	- 12	fresh, unbroken, Hawkesbury Sandstone									PL(A) = 1.3
<u></u>											
	13.25	Bore discontinued at 13.25m									
	- 14										
	- 15										
	- 16										
	- 17										
	- 18										
	- 19										
	-										

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: HW 5.5m, HQ 5.5m

TYPE OF BORING: Hand dug to 1.0m, Solid Flight Auger (TC-Bit) to 5.5m, NMLC-coring to 13.25m

WATER OBSERVATIONS: Free groundwater observed at 5.0m whilst augering

	SAMF	PLIN	G & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	Douglas Partners
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MP	Dollolas Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	ž	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater

BORE: 103	PROJECT	WATERLOO	AUGUST	2019
Bonzinov				
	rtners Groundwater	Project No: 86664.00. BH ID: 103 Depth: 10.00-13.25		
hadrodia		Depth: 10.00-13.25m Core Box No.: 2-2	-level	
96			Kill .	1. 1. 5. 20 1
10			1	
1 Alexandre				
12				
13		END HOLE C 13	.25 m	
	9.00	– 13.25 m		

SURFACE LEVEL: 23 AHD **EASTING:** 334380.7 **NORTHING:** 6247392.2 **DIP/AZIMUTH:** 90°/-- BORE No: 104 PROJECT No: 86864.00 DATE: 28/8/2019 SHEET 1 OF 2

	-	Description	Degree of Weathering	jc	Rock Strength ក្រ	Fracture				Sampling & In Situ Testing				
뇌	Depth (m)	of	Weathering	raph Log	Very Low Very Low High Kery High Kery High Kery High	Spacing (m)	B - Bedding J - Joint	Type	re . %	RQD %	Test Results			
	()	Strata	HW HW EW	Ū		0.50	S - Shear F - Fault	Ţ	ပိမ္ရွိ	R 0 %	& Comments			
22	-1	FILL/SAND SP: medium grained, grey-brown, with 20% fine gravel, moist, appears generally moderately compacted												
-	1.1	SAND SP: medium grained, orange-brown, moist, medium dense, aeolian deposits	-					S			4,4,7 N = 11			
21	-2	From 2m: red-brown												
20	-3	Clayey SAND SC: fine to medium grained, pale grey, low plasticity clay, medium dense, aeolian deposits						S			7,7,8 N = 15			
19	- 4													
	-4							S			5,6,8 N = 14			
18	-5				↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓									
17	5.5 -6 6.11	SANDSTONE: medium grained, pale grey, bedded, very low with medium strength sandstone bands, highly weathered, fractured, \Hawkesbury Sandstone		<u> </u>			5.5m: DS,10mm 5.6m: DS,10mm 5.76m: DS,10mm 5.9m: DS,100mm 6.04m: CS,70mm	<u>_</u>			<u>5/20,B</u> refusal PL(A) = 0.6			
9	7	SANDSTONE: medium grained, pale grey, medium strength, slightly weathered, slightly fractured, Hawkesbury Sandstone					6.72m: B,5°,pl,ro,fe stn	С	100	66	PL(A) = 0.4			
	-7 7.24	SANDSTONE: medium grained, pale grey, medium strength, slightly weathered, slightly fractured, Hawkesbury Sandstone									PL(A) = 0.5			
15	7.85 - 8	SANDSTONE: medium to coarse grained, pale brown, massive, high strength, slightly weathered, unbroken, Hawkesbury Sandstone					7.82m: B,5°,pl,ro,cly 5mm 7.85m: B,10°,pl,ro,fe stn	_			PL(A) = 1.7			
14	8.8 - 9	SANDSTONE: medium grained, pale grey, with <10% siltstone laminations, high strength, fresh, slightly fractured, Hawkesbury Sandstone					9.18m: B,5-10°,un,ro,cln	С	100	100	PL(A) = 1.3			
	•						9.8m: B,5-10°,un,ro,cln							

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: HW 5.5m, HQ 5.5m

TYPE OF BORING: Hand dug to 1.0m, Solid Flight Auger (TC-Bit) 5.5m, NMLC-coring to 13.00m **WATER OBSERVATIONS:** Free groundwater observed at 5.0m whilst augering **REMARKS:** Location coordinates are in UTM Zone 56. Backfilled with drilling spoil.

	SAM	PLIN	3 & IN SITU TESTING	LEG	END				
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 		_	_
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)				Partners
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)				s Partners
C	Core drilling	Ŵ	Water sample	`qq	Pocket penetrometer (kPa)		Dudg	143	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics	: Envii	ronment Groundwate
·	-								

SURFACE LEVEL: 23 AHD **EASTING:** 334380.7 **NORTHING:** 6247392.2 **DIP/AZIMUTH:** 90°/-- BORE No: 104 PROJECT No: 86864.00 DATE: 28/8/2019 SHEET 2 OF 2

\square		Description	Degree of Weathering ﷺ ≩ ≩ ≶ ∞ ∰	υ	Rock Strength	Fracture	Discontinuities	Sa	mplir	ng &	In Situ Testing
Я	Depth (m)	of	weathering	aphi Log	Strength Very Low Medium Very High Ex High	Spacing (m)	B - Bedding J - Joint	e	е%.	0	Test Results
	(11)	Strata	H M M M M M M M M M M M M M M M M M M M	5 –	Ex Lov Very L Mediur Very H Very H	O : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	S - Shear F - Fault	Type	Rec.	RQD %	& Comments
13	-	SANDSTONE: medium grained, pale grey, with <10% siltstone laminations, high strength, fresh, slightly fractured, Hawkesbury Sandstone <i>(continued)</i>						С		100	PL(A) = 1.5
12	- 11						11.23m: B,0°,pl,ro,cly 8mm	С	100	100	PL(A) = 2
11	- 12						12.2m: J,30°,pl,ro,cln				PL(A) = 1.8
÷5	-13 13.0	Bore discontinued at 13.0m		:::: <u>:</u>			_ 12.9m: J,70°,pl,ro,cln				
	- 14										
	- 15										
	- 16 										
	- 19										

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: HW 5.5m, HQ 5.5m

TYPE OF BORING:Hand dug to 1.0m, Solid Flight Auger (TC-Bit) 5.5m, NMLC-coring to 13.00m**WATER OBSERVATIONS:**Free groundwater observed at 5.0m whilst augering**REMARKS:**Location coordinates are in UTM Zone 56. Backfilled with drilling spoil.

SAM	PLIN	G & IN SITU TESTING	LEG	END													
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						_		_	_		_		
B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		- 1			_							-	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test (\$(50) (MPa)		11					5		22				5
C Core drilling	Ŵ	Water sample	, aa	Pocket penetrometer (kPa)				Doug] =	10			_ U				
D Disturbed sample	⊳	Water seep	S	Standard penetration test			/		-								
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)				Geotechnics	/	E	nvire	onr	ment	10	Groun	dwat	er
					,												

В	ORE: 104	PROJECT	: WATERLOO	AUGUS	ST 2019	
Geot	ouglas Pal	Groundwater	Project No: 86666 BH ID: 104 Depth: 550-16.00 Core Box No.: 1)m		
86864.00 M	Jateriao BH104 2	8-8-19 START (25.50m			
7.6	241 (ALA				Dist
8					1)	
		5.5	0 – 10.00m			

BORE: 104	PROJECT	: WATERLOO	AUGUST 20)19
Douglas Part Geotechnics Environment G		Project No: 86664. BH ID: 104 Depth: 10.00-(3.00) Core Box No.: 2-2		0.1.0.
12				
	10.	00 – 13.00 m		

SURFACE LEVEL: 22.5 AHD **EASTING:** 334355.2 **NORTHING:** 6247364.6 **DIP/AZIMUTH:** 90°/-- BORE No: 105 PROJECT No: 86864.00 DATE: 28 - 29/8/2019 SHEET 1 OF 2

\square			Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	0	Rock	Fracture	Discontinuities	Sa	mplir	ng & I	n Situ Testing
R	Dep	oth	of	Weathering	ihdi 0	Strength Medium Medium High Ex High Aater	Spacing				-	Test Results
ľ	(n	ו)	Strata	2232 /0 /	B B B	Very Low Very Low Very High Ex High		B - Bedding J - Joint S - Shear F - Fault	Type	Core	RQD %	&
22		0.2	FILL/SAND SP: medium grained, brown, moist, appears generally moderately compacted FILL/SAND SP: medium grained, pale grey, moist, appears generally moderately compacted	H H H H H H H H H H H H H H H H H H H								Comments
21	- 1	1.1	SAND SP: fine to medium grained, orange-brown, moist, loose, aeolian deposits						S			4,4,4 N = 8
20	-2		From 2m: pale brown-pale yellow, medium dense									
	- 3								S			5,8,13 N = 21
19	- 4		From 3.5m: red-brown, loose									8,6,3
	-5					.			S			N = 9
16	- 6	5.5	Clayey SAND SC: fine to medium grained, pale grey, dense, aeolian deposits						S			4,14,22 N = 36
	-7	7.0	SANDSTONE: fine to medium grained, pale grey, low strength, Hawkesbury Sandstone		/. / // ///////////////////////////////				S			7,14,30/110 refusal
13	- 8	7.5 · 7.75 8.1 ·	SANDSTONE: fine to medium grained, pale grey, bedded, low strength, moderately weathered, fractured, Hawkesbury Sandstone SANDSTONE: medium grained, red and orange, bedded, medium strength, moderately weathered, unbroken, Hawkesbury Sandstone					7.5m: CORE LOSS: 250mm 7.75m: CS,30mm 7.78-8.30m: J,70-90°,un,ro,cln 8.3m: CS,30mm 8.45m: B,5°,pl,ro,cln 8.75m: B,10-20°,un,ro,cln 8.8m: B,10°,pl,ro,cly 5mm 9.45m: DS,70mm	С	88	66	PL(A) = 0.3 PL(A) = 0.6
									С	100	100	

RIG: Geo205

CLIENT:

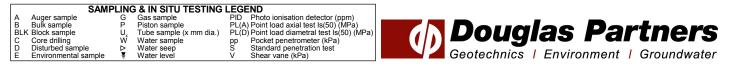
PROJECT:

LOCATION:

Fabcot Pty Ltd

Proposed Woolworths Development

923-935 Bourke Street, Waterloo


DRILLER: GM

LOGGED: JN

CASING: HW 6.0m, HQ 6.0m

TYPE OF BORING: Hand dug to 0.5m, Solid Flight Auger (TC-Bit) to 6.0m, Rotary (mud) to 7.5m, NMLC-coring to 12.6m **WATER OBSERVATIONS:** Free groundwater observed at 5.0m whilst augering

WATER OBSERVATIONS: Free groundwater observed at 5.0m whilst augering

SURFACE LEVEL: 22.5 AHD **EASTING:** 334355.2 **NORTHING:** 6247364.6 **DIP/AZIMUTH:** 90°/-- BORE No: 105 PROJECT No: 86864.00 DATE: 28 - 29/8/2019 SHEET 2 OF 2

Π		Description	Degree of Weathering ﷺ ≩ ≩ ⊗ ∞ ∰	0	Rock Strength a	Fracture	Discontinuities	Sa	mplir	ng &	In Situ Testing	
R	Depth (m)	of	vveathering	aphik -og	Strength High Ex Low Low High Ex High High Ex High Medium High Ex High D1 Cow High Cow High Cow High Cow Cow Cow Cow Cow Cow Cow Cow	Spacing (m)	B - Bedding J - Joint			-	-	
	(11)	Strata	HW MW FRS FR	5 -			S - Shear F - Fault	Type	Rec.	RQD %	& Comments	
12	10.05	SANDSTONE: medium grained, pale grey, with <20% carbonaceous laminations, medium then heigh strength, fresh, unbroken, Hawkesbury Sandstone					10.8m: B,0°,pl,ro,cln				PL(A) = 0.8	
-1-								С	100	100	PL(A) = 1.5	
	- 12						11.85m: B,5°,pl,ro,fe stn				PL(A) = 1.7	
-9	12.6											
		Bore discontinued at 12.6m										
	- 13											
- 6												
	- 14 - 14											
	- - 15 -											
	- 16											
-9	-											
	- 17											
	- - 18											
4												
	- 19											
-	- - -											

RIG: Geo205

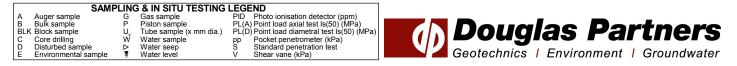
CLIENT:

PROJECT:

LOCATION:

Fabcot Pty Ltd

Proposed Woolworths Development


923-935 Bourke Street, Waterloo

DRILLER: GM

LOGGED: JN

CASING: HW 6.0m, HQ 6.0m

TYPE OF BORING: Hand dug to 0.5m, Solid Flight Auger (TC-Bit) to 6.0m, Rotary (mud) to 7.5m, NMLC-coring to 12.6m **WATER OBSERVATIONS:** Free groundwater observed at 5.0m whilst augering

BORE: 105	PROJECT:	WATERLOO	AUGUST 2019	
Douglas Pal Geotechnics Environment	Groundwater	Project No: 86864.00 BH 10: 105 Depth: /2.00 - 12.60m Core Box No.: 2-2		
12 1 1 1 1 1	1 de		ENDC12.60m	
	<u>, , , , , , , , , , , , , , , , , , , </u>			1.4
-				
	12.0	0 – 12.60 m		

SURFACE LEVEL: 22.2 AHD **EASTING:** 334333.6 **NORTHING:** 6247340.7 **DIP/AZIMUTH:** 90°/-- BORE No: 106 PROJECT No: 86864.00 DATE: 29/8/2019 SHEET 1 OF 2

	-		Description	Degree of Weathering	ie _	Rock Strength ត្រ	Fracture	Discontinuities			-	n Situ Testing
¥	Dep (m		of		Graphic Log	Ex Low Very Low Low Very High Vater Katigh Kater	Spacing (m)	B - Bedding J - Joint	Type	Core Rec. %	a a %	Test Results &
	•		Strata	H M M M M M M M M M M M M M M M M M M M	0	Ex Low Nedi Very Very	0.01 0.105 0.10 0.50 1.00	S - Shear F - Fault	Ļ	й ў	Ж,	Comments
2		0.3	FILL/SAND SP: medium grained, grey-brown, with 20% fine gravel moist, appears generally moderately compacted FILL/SAND SP: medium grained, brown, moist, appears generally moderately compacted							-		
ŀ	-2		SAND SP: fine to medium grained, orange-brown, moist, loose, aeolian deposits						S	-		1,3,4 N = 7
20	-3		From 2.5m: pale brown-yellow, medium dense						s	-		8,9,12 N = 21
18 19 19	- 4		From 4m: pale brown, loose						s	-		1,5,3 N = 8
	-5		From 5.5m: dense From 5.8m: red-brown			¥			S			3,15,16 N = 31
16	· 6	6.5	Clayey SAND SC: fine to medium grained, pale grey, low plasticity clay, very loose, aeolian deposits						S	-		sunk under hammer weigh
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 8	7.5-	Sandy CLAY CI: medium plasticity, pale grey, fine to medium sand, moist, hard, extremely weathered material						S	-		17,13,3/20 refusal
14	- 9	8.2-	SANDSTONE: medium to coarse grained, red-brown, massive, low strength with medium strength sandstone bands, moderately weathered, slightly fractured, Hawkesbury Sandstone					8.23m: B,0°,pl,ro,fe stn	с	100	90	PL(A) = 0.2 PL(A) = 0.6
13	ç	0.55 -						9.23m: B,0°,pl,ro,cly 2mm				

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: HW 6.0m, HQ 6.0m

TYPE OF BORING: Hand dug to 1.0m, Solid Flight Auger (TC-Bit) to 6.0m, Rotary (mud) to 8.0m, NMLC-coring to 12.6m **WATER OBSERVATIONS:** Free groundwater observed at 4.8m whilst augering

REMARKS: Location coordinates are in UTM Zone 56. Backfilled with drilling spoil.

	SAM	PLING	& IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 _	
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		Douglas Partners
BLł	Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)		N Douolas Pariners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		📕 Geotechnics Environment Groundwate

SURFACE LEVEL: 22.2 AHD **EASTING:** 334333.6 **NORTHING:** 6247340.7 **DIP/AZIMUTH:** 90°/-- BORE No: 106 PROJECT No: 86864.00 DATE: 29/8/2019 SHEET 2 OF 2

Γ			Description	Degre	ee of	.U	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
R		epth m)	of	Weath	Sing	Log	Strength Very High Very High KEX High	Spacing (m)	B - Bedding J - Joint	e	re .%	Q.,	Test Results
		,	Strata	M W E	N N N	ወ_		0.01	S - Shear F - Fault	Type	Core Rec. %	R0%	& Comments
-	-		SANDSTONE: medium to coarse						10.03m: B,0-10°,un,ro,fe				PL(A) = 0.4
12		10.5	grained, pale grey and orange, medium strength, bedded, moderately weathered, slightly fractured, Hawkesbury Sandstone	╵╵ <mark>┍</mark> ┿┥]			 	stn				(, ,
Ē	Ē		(continued)		ij				10.65m: Cs, 200mm				
E	-11		SANDSTONE: medium to coarse grained, red-brown, medium						10.9m: Cs, 150mm				
-5-	F	11.3	strength, bedded, with <50%	ļ	ı İ			i ii Yi	11.23m: J,30°,pl,ro,fe	с	100	83	PL(A) = 0.4
-			extremely low strength bands, highly weathered, fractured, Hawkesbury Sandstone					┆╎╏┛╎	stn 11.68m: B,10°,pl,ro,fe				
Ē	- 12		SANDSTONE: medium to coarse				┥┥┥	╎╵┛╎╎	stn 11.9m: Cs, 30mm				
- 2	- '2	12.2	grained, pale grey and brown, م medium strength, bedded, slightly ر		ЦĻ		┆┽┽┨╎╎╎		¹ √12.02m:				PL(A) = 0.7
Ē	Ē		weathered, slightly fractured, Hawkesbury Sandstone						B,5-10°,pl,ro,cbs stn 12.1m: Ds, 30mm				(.),
E	E	12.6	SANDSTONE: medium to coarse		÷								
ł	-		grained, pale grey, medium strength, massive, fresh, slightly										
Ē	- 13 [fractured, Hawkesbury Sandstone		ij			i ii ii					
-	-		Bore discontinued at 12.6m										
ŧ	F												
E	E												
ł	- 14												
	Ē				ij								
ł	F												
Ē	Ē				ii			i ii ii					
E	- 15												
	F												
Ē	Ē												
ł	F												
Ē	- 16				ij			i ii ii					
-0	-												
ŀ	F												
E	E												
ŧ	- 17												
-0	E												
F	F												
ŧ	F				ij			i ii ii					
Ē	- 18												
4	'°			İİİ	İİ								
ŧ	ŧ												
Ē	Ē			l i i i	İİ			1 11 11					
ŀ	F												
ŀ	- 19				İİ								
-~	Ē												
ŀ	ŧ												
ŧ	ŧ												
Ľ	[]												

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: HW 6.0m, HQ 6.0m

TYPE OF BORING:Hand dug to 1.0m, Solid Flight Auger (TC-Bit) to 6.0m, Rotary (mud) to 8.0m, NMLC-coring to 12.6m**WATER OBSERVATIONS:**Free groundwater observed at 4.8m whilst augering**REMARKS:**Location coordinates are in UTM Zone 56. Backfilled with drilling spoil.

	SAM	PLIN	3 & IN SITU TESTING	LEG	END		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 _	
B	Bulk sample K Block sample	P	Piston sample Tube sample (x mm dia.)		A) Point load axial test Is(50) (MPa) D) Point load diametral test Is(50) (MPa)		Douglas Partners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Duyias rai liicis
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	ž	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

BORE: 106	PROJEC	T: WATERLOO	AUGUST 2019	
Douglas Pai Geotechnics Environment		Project No: 85864.cc BH ID: 106 Depth: (2.00-(2.60) Core Box No.: 2-2	-	
P-CCSCCC			ENDO12.60m	
32				
	12.	00 – 12.60 m		

SURFACE LEVEL: 24.4 AHD **EASTING:** 334386.2 **NORTHING:** 6247315.5 **DIP/AZIMUTH:** 90°/-- BORE No: 101A PROJECT No: 86864.00 DATE: 30/8/2019 SHEET 1 OF 1

		Description	Degree of Weathering Cappi B B B Cappi Cap	Rock Fr	racture	Discontinuities	Sampling & In Situ Testing
님	Depth	of	vveatnering		pacing 👘		
	(m)	Strata	Grad Strain Stra	Ex Low Very Low Medium Medium Ex High Ex High		- Bedding J - Joint - Shear F - Fault	e v v v v v v v v v v v v v v v v v v v
+		FILL/SAND SP: medium grained,					A Comments
24		brown, with 30% bricks, moist					
23	-1 1.0- 1.1	CONCRETE: 100 mm FILL/SAND SP: medium grained, grey-brown, moist				-	A
	-2					-	<u> </u>
32	2.3 -	SAND SP: medium grained, yellow, damp, aeolian deposits					
	- 3						A
21	3.2-	SAND SP: medium grained, pale yellow, moist, aeolian deposits					
	- 4 4.2 -					-	A
20	-5	SAND SP: medium grained, yellow, moist, aeolian deposits					
19							A
8	5.8 - - 6	Clayey SAND SC: fine to medium grained, pale grey, low plasticity clay, wet, aeolian deposits				-	A
-	6.5 - - 7 7.0 -	Sandy CLAY CI: medium plasticity, pale grey and red, fine to medium grained sand, moist, extremely weathered material					A
17		Bore discontinued at 7.1m					
F	- 8						
16							
	- 9						
15							
-							

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: Nil

TYPE OF BORING:Hand dug to 0.5m, Solid Flight Auger (TC-Bit) to 7.1mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:Location coordinates are in UTM Zone 56. Backfilled with drilling spoil.

SAMP	LIN	G & IN SITU TESTING	LEG	END							
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 		_		_	_	
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Doug	_				
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)				\mathbf{as}			
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			ישנ				
D Disturbed sample	⊳	Water seep	S	Standard penetration test							
E Environmental sample	ž	Water level	V	Shear vane (kPa)		📕 Geotechnics	1	Envir	onmei	nt Gro	oundwater

SURFACE LEVEL: 24.4 AHD **EASTING:** 334430.4 **NORTHING:** 6247365.2 **DIP/AZIMUTH:** 90°/-- BORE No: 103A PROJECT No: 86864.00 DATE: 30/8/2019 SHEET 1 OF 1

				De	-	Deals						
	Dant		Description	Degree of Weathering	ic -	Rock F Strength ត្រ c	Fracture	Discontinuities	Sa		-	In Situ Testing
립	Depti (m)		of	Weathering	Loc	with the second	(m)	B - Bedding J - Joint	Type	Core Rec. %	۵%	Test Results &
	. ,		Strata	H M M M M M M M M M M M M M M M M M M M	G	Strength Ex Low Very Low Medum Fx High Migh Cov Nater Cov Nater Cov Nater Nation	0.05 0.10 1.00	S - Shear F - Fault	`	с я	٣°	Comments
24			FILL/SAND SP: medium grained, grey-brown, with 30% bricks, moist						A			
23			CONCRETE: 100 mm FILL/SAND SP: fine to medium grained, dark grey, moist						A			
	-2	1.8-	SAND SP: medium grained, yellow, damp, aeolian deposits						A			
22	-3	2.5-	Clayey SAND SC: fine to medium grained, pale grey, low plasticity clay, moist, aeolian deposits						A			
21	3	3.3-	SAND SP: medium grained, yellow, damp, aeolian deposits						A			
20	•	4.0-	Sandy CLAY CI: medium plasticity, pale grey, fine to medium sand, moist						_ A			
	• • •	5.0h	Sandy CLAY CI: medium plasticity, pale grey and red, fine to medium sand, with <20% ferruginised seams, moist, extremely weathered /material						A			
- 19	• • • •		Sandy CLAY CI: low plasticity, pale grey, fine to medium sand, moist, extremely weathered material									
18	-6 6	6.0-	SANDSTONE: medium to coarse grained, pale grey and red, very low to low strength, Hawkesbury Sandstone						A			
	-7 -7		SANDSTONE: medium to coarse grained, brown, low to medium strength, Hawkesbury Sandstone						A			
16	-8 8	3.0 -	Bore discontinued at 8.0m									
15	-9											

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: Nil

TYPE OF BORING:Hand dug to 1.0m, Solid Flight Auger (TC-Bit) to 8.0mWATER OBSERVATIONS:Groundwater observed at 4.5m whilst augeringREMARKS:Location coordinates are in UTM Zone 56. Backfilled with drilling spoil.

SAME	PLIN	3 & IN SITU TESTING	LEG	END							
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 		_		_	_	
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			_				
BLK Block sample	U,	Tube sample (x mm dia.)	PL(E) Point load diametral test Is(50) (MPa)	1.1			\mathbf{as}		rtne	375
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Doug					/ V
D Disturbed sample	⊳	Water seep	S	Standard penetration test	17		· .				
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	; 	Enviro	nment	Ground	Jwater
· · ·											

SURFACE LEVEL: 23 AHD **EASTING:** 334380.9 **NORTHING:** 6247392.5 **DIP/AZIMUTH:** 90°/-- BORE No: 104A PROJECT No: 86864.00 DATE: 30/8/2019 SHEET 1 OF 1

	Description	Degree of Weathering Cap C B B C C C C C C C C C C C C C C C C	Rock Strength ត្រ	Fracture	Discontinuities	Sampling & In Situ Testing
Depth	of			Spacing	B - Bedding J - Joint	_ຍ _ຍ ຮິ Test Result
^m (m)	Strata	N N N N N N N N N N N N N N N N N N N	Strength Neduration Kery High Kery High Kery High Kery High Kery High Kery Low Neduration Kery Low Nedurat		S - Shear F - Fault	eesult eest Result Comments Comments
8 - 0.3	FILL/SAND SP: medium grained, grey-brown, with 20% fine gravel, moist //FILL/SAND SP: medium grained, brown, damp, aeolian deposits					A
·≅−1 − 1.5 - 1.5	SAND SP: medium grained, orange-brown, damp, aeolian deposits					
2.2	SAND SP: medium to coarse grained, red-brown, damp, aeolian deposits Clayey SAND SC: fine to medium					
-≈ - 3 - 3 - 3.5	grained, pale grey, low plasticity clay, moist, aeolian deposits SAND SP: medium grained, pale					
ల్ - 4 	grey, moist, aeolian deposits					
	SANDSTONE: medium grained, pale grey, low to medium strength, Hawkesbury Sandstone					
÷	Bore discontinued at 6.1m					
- - - - - - - - - - - - - - - - - - -						
- - - - - - - - - - - - - - - - - - -						

RIG: Geo205

CLIENT:

PROJECT:

Fabcot Pty Ltd

LOCATION: 923-935 Bourke Street, Waterloo

Proposed Woolworths Development

DRILLER: GM

LOGGED: JN

CASING: Nil

TYPE OF BORING:Hand dug to 1.0m, Solid Flight Auger (TC-Bit) to 6.1mWATER OBSERVATIONS:Free groundwater observed at 5.0m whilst augeringREMARKS:Location coordinates are in UTM Zone 56. Backfilled with drilling spoil.

SAMP	LIN	G & IN SITU TESTING	LEG	END								
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	 _		_		_		_	
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)								
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test Is(50) (MPa)	1°	Doug		\mathbf{as}				5
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			7 - '					J
D Disturbed sample	⊳	Water seep	S	Standard penetration test	17.		· .	- ·				
E Environmental sample	ž	Water level	V	Shear vane (kPa)		📕 Geotechnic	s I	Envir	onme	ent I G	Groundwa	ter

Appendix D

Laboratory Test Results

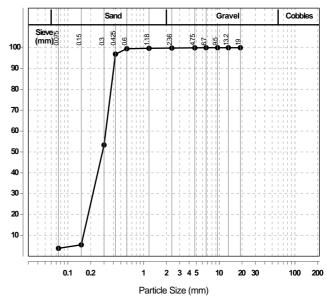
Material Test Report

Report Number:	86864.00-1
Issue Number:	1
Date Issued:	09/09/2019
Client:	Fabcot Pty Ltd
	1 Woolworths Way, Bella Vista NSW 2153
Contact:	Michelle Chiu
Project Number:	86864.00
Project Name:	Proposed Woolworths Development
Project Location:	923-935 Bourke Street, Waterloo
Work Request:	4890
Sample Number:	19-4890A
Date Sampled:	29/08/2019
Dates Tested:	04/09/2019 - 09/09/2019
Sampling Method:	Sampled by Engineering Department
	The results apply to the sample as received
Sample Location:	105 (2.5-2.95m)
Material:	SAND : Brown sand, with trace silt

Particle Size Distribution	on (AS1289 3.6.1)	
Sieve	Passed %	Passing Limits
19 mm	100	
13.2 mm	100	
9.5 mm	100	
6.7 mm	100	
4.75 mm	100	
2.36 mm	100	
1.18 mm	100	
0.6 mm	100	
0.425 mm	97	
0.3 mm	53	
0.15 mm	5	
0.075 mm	4	

Douglas Partners Geotechnics | Environment | Groundwater

Geotechnics I Environment I Groundwater Douglas Partners Pty Ltd Sydney Laboratory 96 Hermitage Road West Ryde NSW 2114 Phone: (02) 9809 0666 Fax: (02) 9809 0666 Email: lujia.wu@douglaspartners.com.au Accredited for compliance with ISO/IEC 17025 - Testing


Percent Passing

Approved Signatory: Lujia Wu soil technician NATA Accredited Laboratory Number: 828

Win

Mia

Particle Size Distribution

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 225369

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Shahin Falahati, Julian Ng
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86864.00, Waterloo
Number of Samples	1 Water, 2 Soil
Date samples received	04/09/2019
Date completed instructions received	04/09/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	11/09/2019
Date of Issue	06/09/2019
NATA Accreditation Number 29	1. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Client Reference: 86864.00, Waterloo

Miscellaneous Inorganics		
Our Reference		225369-1
Your Reference	UNITS	BH-MW3
Date Sampled		28/08/2019
Type of sample		Water
Date prepared	-	04/09/2019
Date analysed	-	04/09/2019
рН	pH Units	6.6
Electrical Conductivity	μS/cm	190
Chloride, Cl	mg/L	22
Sulphate, SO4	mg/L	5

Misc Inorg - Soil			
Our Reference		225369-2	225369-3
Your Reference	UNITS	BH103 (1.2- 1.65m)	BH101 (4.0- 4.45m)
Date Sampled		27/08/2019	26/08/2019
Type of sample		Soil	Soil
Date prepared	-	05/09/2019	05/09/2019
Date analysed	-	05/09/2019	05/09/2019
pH 1:5 soil:water	pH Units	7.9	8.1
Electrical Conductivity 1:5 soil:water	µS/cm	240	17
Chloride, Cl 1:5 soil:water	mg/kg	58	<10
Sulphate, SO4 1:5 soil:water	mg/kg	280	<10

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

Client Reference: 86864.00, Waterloo

QUALITY COI	NTROL: Mise	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			04/09/2019	[NT]	[NT]		[NT]	04/09/2019	
Date analysed	-			04/09/2019	[NT]	[NT]		[NT]	04/09/2019	
рН	pH Units		Inorg-001	[NT]	[NT]	[NT]		[NT]	102	
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]	[NT]		[NT]	101	
Chloride, Cl	mg/L	1	Inorg-081	<1	[NT]	[NT]		[NT]	110	
Sulphate, SO4	mg/L	1	Inorg-081	<1	[NT]	[NT]	[NT]	[NT]	117	[NT]

QUALITY CONTROL: Misc Inorg - Soil					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			05/09/2019	3	05/09/2019	05/09/2019		05/09/2019	
Date analysed	-			05/09/2019	3	05/09/2019	05/09/2019		05/09/2019	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	3	8.1	8.0	1	102	
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	3	17	17	0	104	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	3	<10	<10	0	110	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	3	<10	<10	0	117	[NT]

Result Definiti	Result Definitions		
NT	Not tested		
NA	Test not required		
INS	Insufficient sample for this test		
PQL	Practical Quantitation Limit		
<	Less than		
>	Greater than		
RPD	Relative Percent Difference		
LCS	Laboratory Control Sample		
NS	Not specified		
NEPM	National Environmental Protection Measure		
NR	Not Reported		

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Report Comments

Tests/Analytes PH have exceeded the recommended technical holding times, Envirolab Group form 347 "Recommended Preservation and Holding Times" can be provided on request (available on the Envirolab website)

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 225382

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Julian Ng
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86864.00, Waterloo
Number of Samples	8 SOIL
Date samples received	04/09/2019
Date completed instructions received	04/09/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	11/09/2019	
Date of Issue	10/09/2019	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		225382-1	225382-2	225382-3	225382-4	225382-5
Your Reference	UNITS	BH104A	BH104A	BH104A	BH104A	BH104A
Depth		0.0-0.1	1.1-1.2	2.0-2.1	3.0-3.1	4.0-4.1
Date Sampled		30/08/2019	30/08/2019	30/08/2019	30/08/2019	30/08/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	06/09/2019	06/09/2019	06/09/2019	06/09/2019	06/09/2019
Date analysed	-	06/09/2019	06/09/2019	06/09/2019	06/09/2019	06/09/2019
pH⊧ (field pH test)*	pH Units	7.1	7.1	6.4	6.5	6.5
pHFox (field peroxide test)*	pH Units	5.8	6.5	6.6	6.8	5.2
Reaction Rate*	-	Moderate	Slight	Slight	Slight	Slight

sPOCAS field test		
Our Reference		225382-6
Your Reference	UNITS	BH104A
Depth		5.0-5.1
Date Sampled		30/08/2019
Type of sample		SOIL
Date prepared	-	06/09/2019
Date analysed	-	06/09/2019
pH _F (field pH test)*	pH Units	6.0
pH _{FOX} (field peroxide test)*	pH Units	5.3
Reaction Rate*	-	Slight

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.

Result Definiti	Result Definitions		
NT	Not tested		
NA	Test not required		
INS	Insufficient sample for this test		
PQL	Practical Quantitation Limit		
<	Less than		
>	Greater than		
RPD	Relative Percent Difference		
LCS	Laboratory Control Sample		
NS	Not specified		
NEPM	National Environmental Protection Measure		
NR	Not Reported		

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 225384

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Julian Ng
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86864.00, Waterloo
Number of Samples	10 SOIL
Date samples received	04/09/2019
Date completed instructions received	04/09/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	11/09/2019	
Date of Issue	11/09/2019	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		225384-1	225384-2	225384-3	225384-4	225384-5
Your Reference	UNITS	BH103A	BH103A	BH103A	BH103A	BH103A
Depth		0.0-0.1	1.1-1.2	2.0-2.1	3.0-3.1	4.0-4.1
Date Sampled		30/08/2019	30/08/2019	30/08/2019	30/08/2019	30/08/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
Date analysed	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
pH⊧ (field pH test)*	pH Units	7.2	10.8	8.0	5.6	4.9
pHFox (field peroxide test)*	pH Units	5.3	9.2	4.2	4.6	2.7
Reaction Rate*	-	Moderate	Vigorous	Slight	Slight	Slight

sPOCAS field test		
Our Reference		225384-6
Your Reference	UNITS	BH103A
Depth		5.0-5.1
Date Sampled		30/08/2019
Type of sample		SOIL
Date prepared	-	09/09/2019
Date analysed	-	09/09/2019
pH _F (field pH test)*	pH Units	5.4
pH _{FOX} (field peroxide test)*	pH Units	3.8
Reaction Rate*	-	Slight

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.

Result Definiti	Result Definitions		
NT	Not tested		
NA	Test not required		
INS	Insufficient sample for this test		
PQL	Practical Quantitation Limit		
<	Less than		
>	Greater than		
RPD	Relative Percent Difference		
LCS	Laboratory Control Sample		
NS	Not specified		
NEPM	National Environmental Protection Measure		
NR	Not Reported		

Quality Control Definitions			
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.		
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.		
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.		
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.		
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.		
Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & F. Coli levels are less than			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 225384-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Shahin Falahati
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86864.00, Waterloo
Number of Samples	10 SOIL
Date samples received	04/09/2019
Date completed instructions received	17/09/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	24/09/2019	
Date of Issue	24/09/2019	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

sPOCAS + %S w/w			
Our Reference		225384-A-5	225384-A-6
Your Reference	UNITS	BH103A	BH103A
Depth		4.0-4.1	5.0-5.1
Date Sampled		30/08/2019	30/08/2019
Type of sample		SOIL	SOIL
Date prepared	-	22/09/2019	22/09/2019
Date analysed	-	22/09/2019	22/09/2019
рН ксі	pH units	4.3	4.2
TAA pH 6.5	moles H+/t	39	36
s-TAA pH 6.5	%w/w S	0.06	0.06
pH _{ox}	pH units	4.3	4.9
TPA pH 6.5	moles H ⁺ /t	78	55
s-TPA pH 6.5	%w/w S	0.12	0.09
TSA pH 6.5	moles H ⁺ /t	39	19
s-TSA pH 6.5	%w/w S	0.06	0.03
ANCE	% CaCO ₃	<0.05	<0.05
a-ANC _E	moles H ⁺ /t	<5	<5
s-ANC _E	%w/w S	<0.05	<0.05
SKCI	%w/w S	0.008	0.005
Sp	%w/w	0.009	0.007
Spos	%w/w	<0.005	<0.005
a-S _{POS}	moles H ⁺ /t	<5	<5
Саксі	%w/w	0.03	0.008
Ca⊦	%w/w	0.03	0.009
Ca _A	%w/w	<0.005	<0.005
Мдксі	%w/w	0.010	0.016
Mg₽	%w/w	0.006	0.013
Mg _A	%w/w	<0.005	<0.005
S _{HCI}	%w/w S	0.008	0.005
Snas	%w/w S	<0.005	<0.005
a-Snas	moles H ⁺ /t	<5	<5
s-Snas	%w/w S	<0.01	<0.01
Fineness Factor	-	1.5	1.5
a-Net Acidity	moles H ⁺ /t	39	38
s-Net Acidity	%w/w S	0.06	0.06
Liming rate	kg CaCO₃ /t	2.9	2.8
s-Net Acidity without -ANCE	%w/w S	0.063	0.060
a-Net Acidity without ANCE	moles H ⁺ /t	39	38
Liming rate without ANCE	kg CaCO₃/t	2.9	2.8

SCr			
Our Reference		225384-A-5	225384-A-6
Your Reference	UNITS	BH103A	BH103A
Depth		4.0-4.1	5.0-5.1
Date Sampled		30/08/2019	30/08/2019
Type of sample		SOIL	SOIL
Date prepared	-	23/09/2019	23/09/2019
Date analysed	-	23/09/2019	23/09/2019
Chromium Reducible Sulfur	%w/w	<0.005	<0.005
a-Chromium Reducible Sulfur	moles H+/t	<3	<3

Method ID	Methodology Summary
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

QUALITY	CONTROL: s	POCAS -	+ %S w/w			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			22/09/2019	[NT]		[NT]	[NT]	22/09/2019	
Date analysed	-			22/09/2019	[NT]		[NT]	[NT]	22/09/2019	
pH _{kcl}	pH units		Inorg-064	[NT]	[NT]		[NT]	[NT]	89	
ТАА рН 6.5	moles H*/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	95	
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
pH _{Ox}	pH units		Inorg-064	[NT]	[NT]		[NT]	[NT]	94	
TPA pH 6.5	moles H*/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	120	
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
TSA pH 6.5	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
ANCE	% CaCO₃	0.05	Inorg-064	<0.05	[NT]		[NT]	[NT]	[NT]	
a-ANC _E	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-ANC _E	%w/w S	0.05	Inorg-064	<0.05	[NT]		[NT]	[NT]	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{POS}	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
a-S _{POS}	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
Саксі	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Ca _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Ca _A	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _{KCI}	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _A	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
a-S _{NAS}	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-Snas	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
Fineness Factor	-	1.5	Inorg-064	<1.5	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-064	<0.75	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity without -ANCE	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	

QUALITY CONTROL: sPOCAS + %S w/w					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
a-Net Acidity without ANCE	moles H⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]		
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-064	<0.75	[NT]		[NT]	[NT]		

QUALITY CONTROL: SCr				Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			23/09/2019	[NT]		[NT]	[NT]	23/09/2019	
Date analysed	-			23/09/2019	[NT]		[NT]	[NT]	23/09/2019	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	[NT]	[NT]		[NT]	[NT]	110	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 225385

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Shahin Falahati, Julian Ng
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86864.00, Waterloo
Number of Samples	9 Soil
Date samples received	04/09/2019
Date completed instructions received	04/09/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	11/09/2019				
Date of Issue	10/09/2019				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		225385-1	225385-2	225385-3	225385-4	225385-5
Your Reference	UNITS	BH101A 0.0- 0.1m	BH101A 1.1- 1.2m	BH101A 2.0- 2.1m	BH101A 3.0- 3.1m	BH101A 4.0- 4.1m
Depth		0.0-0.1	1.1-1.2	2.0-2.1	3.0-3.1	4.0-4.1
Date Sampled		30/08/2019	30/08/2019	30/08/2019	30/08/2019	30/08/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
Date analysed	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
pH⊧ (field pH test)*	pH Units	7.2	10.6	8.3	8.3	8.3
pH _{FOX} (field peroxide test)*	pH Units	6.3	7.2	6.4	6.4	6.3
Reaction Rate*	-	Moderate	High	Moderate	Slight	Slight

sPOCAS field test			
Our Reference		225385-6	225385-7
Your Reference	UNITS	BH101A 5.0- 5.1m	BH101A 6.0- 6.1m
Depth		5.0-5.1	6.0-6.1
Date Sampled		30/08/2019	30/08/2019
Type of sample		Soil	Soil
Date prepared	-	09/09/2019	09/09/2019
Date analysed	-	09/09/2019	09/09/2019
pH _F (field pH test)*	pH Units	7.8	7.2
pH _{FOX} (field peroxide test)*	pH Units	6.3	6.0
Reaction Rate*	-	Slight	Slight

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.

Result Definiti	Result Definitions		
NT	Not tested		
NA	Test not required		
INS	Insufficient sample for this test		
PQL	Practical Quantitation Limit		
<	Less than		
>	Greater than		
RPD	Relative Percent Difference		
LCS	Laboratory Control Sample		
NS	Not specified		
NEPM	National Environmental Protection Measure		
NR	Not Reported		

Quality Control Definitions			
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.		
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.		
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.		
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.		
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.		
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than		

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 225386

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Julian Ng
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	86864.00, Waterloo
Number of Samples	8 SOIL
Date samples received	04/09/2019
Date completed instructions received	04/09/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	11/09/2019	
Date of Issue	10/09/2019	
NATA Accreditation Number 29	01. This document shall not be reproduced except in	n full.
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

<u>Results Approved By</u> Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

sPOCAS field test						
Our Reference		225386-1	225386-2	225386-3	225386-4	225386-5
Your Reference	UNITS	BH106	BH106	BH106	BH106	BH106
Depth		0.0-0.1	1.0-1.45	2.5-2.95	4.0-4.45	5.5-5.95
Date Sampled		30/08/2019	30/08/2019	30/08/2019	30/08/2019	30/08/2019
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
Date analysed	-	09/09/2019	09/09/2019	09/09/2019	09/09/2019	09/09/2019
pH⊧ (field pH test)*	pH Units	6.5	7.5	8.0	7.6	7.3
pHFox (field peroxide test)*	pH Units	4.7	6.2	6.3	6.3	6.2
Reaction Rate*	-	High	Slight	Slight	Slight	Slight

sPOCAS field test		
Our Reference		225386-6
Your Reference	UNITS	BH106
Depth		7.0-7.45
Date Sampled		30/08/2019
Type of sample		SOIL
Date prepared	-	09/09/2019
Date analysed	-	09/09/2019
pH _F (field pH test)*	pH Units	6.1
pH _{FOX} (field peroxide test)*	pH Units	3.8
Reaction Rate*	-	Moderate

Method ID	Methodology Summary
Inorg-063	pH- measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide or extracted with water. Based on section H, Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004. To ensure accurate results these tests are recommended to be done in the field as pH may change with time thus these results may not be representative of true field conditions.

Result Definiti	Result Definitions		
NT	Not tested		
NA	Test not required		
INS	Insufficient sample for this test		
PQL	Practical Quantitation Limit		
<	Less than		
>	Greater than		
RPD	Relative Percent Difference		
LCS	Laboratory Control Sample		
NS	Not specified		
NEPM	National Environmental Protection Measure		
NR	Not Reported		

Quality Control Definitions			
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.		
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.		
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.		
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.		
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.		
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than		

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 225386-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Shahin Falahati
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details		
Your Reference	86864.00, Waterloo	
Number of Samples	8 SOIL	
Date samples received	04/09/2019	
Date completed instructions received	17/09/2019	

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	24/09/2019				
Date of Issue	24/09/2019				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 225386-A Revision No: R00

sPOCAS + %S w/w		
Our Reference		225386-A-6
Your Reference	UNITS	BH106
Depth		7.0-7.45
Date Sampled		30/08/2019
Type of sample		SOIL
Date prepared	-	22/09/2019
Date analysed	-	22/09/2019
pH kci	pH units	4.1
TAA pH 6.5	moles H+ /t	21
s-TAA pH 6.5	%w/w S	0.03
pH _{ox}	pH units	4.6
TPA pH 6.5	moles H+ /t	22
s-TPA pH 6.5	%w/w S	0.04
TSA pH 6.5	moles H+ /t	<5
s-TSA pH 6.5	%w/w S	<0.01
ANCe	% CaCO₃	<0.05
a-ANC _E	moles H+/t	<5
s-ANC _E	%w/w S	<0.05
S _{KCI}	%w/w S	<0.005
SP	%w/w	<0.005
Spos	%w/w	<0.005
a-S _{POS}	moles H+ /t	<5
Саксі	%w/w	<0.005
Ca _P	%w/w	<0.005
Сад	%w/w	<0.005
Мдксі	%w/w	0.016
Mg₽	%w/w	0.014
Mg _A	%w/w	<0.005
S _{HCI}	%w/w S	<0.005
Snas	%w/w S	<0.005
a-Snas	moles H+/t	<5
s-Snas	%w/w S	<0.01
Fineness Factor	-	1.5
a-Net Acidity	moles H+ /t	22
s-Net Acidity	%w/w S	0.04
Liming rate	kg CaCO₃ /t	1.7
s-Net Acidity without -ANCE	%w/w S	0.036
a-Net Acidity without ANCE	moles H+ /t	22
Liming rate without ANCE	kg CaCO₃ /t	1.7

SCr		
Our Reference		225386-A-6
Your Reference	UNITS	BH106
Depth		7.0-7.45
Date Sampled		30/08/2019
Type of sample		SOIL
Date prepared	-	23/09/2019
Date analysed	-	23/09/2019
Chromium Reducible Sulfur	%w/w	<0.005
a-Chromium Reducible Sulfur	moles H+ /t	<3

Method ID	Methodology Summary
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.
Inorg-068	Chromium Reducible Sulfur - Hydrogen Sulfide is quantified by iodometric titration after distillation to determine potential acidity. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

QUALITY	CONTROL: s	POCAS -	+ %S w/w			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			22/09/2019	[NT]		[NT]	[NT]	22/09/2019	
Date analysed	-			22/09/2019	[NT]		[NT]	[NT]	22/09/2019	
pH _{kcl}	pH units		Inorg-064	[NT]	[NT]		[NT]	[NT]	89	
ТАА рН 6.5	moles H*/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	95	
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
pH _{Ox}	pH units		Inorg-064	[NT]	[NT]		[NT]	[NT]	94	
TPA pH 6.5	moles H*/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	120	
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
TSA pH 6.5	moles H*/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
ANCE	% CaCO ₃	0.05	Inorg-064	<0.05	[NT]		[NT]	[NT]	[NT]	
a-ANC _E	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-ANC _E	%w/w S	0.05	Inorg-064	<0.05	[NT]		[NT]	[NT]	[NT]	
S _{KCI}	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{POS}	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
a-S _{POS}	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
Саксі	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Ca _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Ca _A	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _{KCI}	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _A	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
a-S _{NAS}	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-Snas	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
Fineness Factor	-	1.5	Inorg-064	<1.5	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-064	<0.75	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity without -ANCE	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	

QUALITY CONTROL: sPOCAS + %S w/w						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
a-Net Acidity without ANCE	moles H⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]			
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-064	<0.75	[NT]		[NT]	[NT]			

QUALITY CONTROL: SCr						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			23/09/2019	[NT]		[NT]	[NT]	23/09/2019	
Date analysed	-			23/09/2019	[NT]		[NT]	[NT]	23/09/2019	
Chromium Reducible Sulfur	%w/w	0.005	Inorg-068	<0.005	[NT]		[NT]	[NT]	[NT]	
a-Chromium Reducible Sulfur	moles H+/t	3	Inorg-068	<3	[NT]		[NT]	[NT]	110	

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Faecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.