

Gunyama Park Stage 2 and George Julius Avenue North Remedial Action Plan – Gunyama Park Stage 2 and George Julius Avenue North -Zetland, NSW Commercial-in-Confidence

Remedial Action Plan

Gunyama Park Stage 2 and George Julius Avenue North - Zetland, NSW

Client: City of Sydney
ABN: 22 636 550 790

Prepared by

AECOM Australia Pty Ltd

Gadigal Country, Level 21, 420 George Street, Sydney NSW 2000, PO Box Q410, QVB Post Office NSW 1230, Australia T +61 2 8008 1700 www.aecom.com

ABN 20 093 846 925

28-Aug-2023

Job No.: 60477507

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 and ISO45001.

© AECOM Australia Pty Ltd (AECOM) (AECOM). All rights reserved.

AECOM has prepared this document for he sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety. AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other hird parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Gunyama Park Stage 2 and George Julius Avenue North Remedial Action Plan – Gunyama Park Stage 2 and George Julius Avenue North -Zetland, NSW Commercial-in-Confidence

Quality Information

Document Remedial Action Plan

Ref 60477507

Date 28-Aug-2023

Originator Jack Rawsthorne

Checker/s Kate McGrath
Verifier/s Jonathan Ho

Revision History

Rev	Revision Date	Details	Approved	
IXEV	Nevision Date		Name/Position	Signature
0	23-Jun-2023	Final	Dane Mallinson Principal Environmental Scientist	Ja Marin
1	21-Aug-2023	Final	Dane Mallinson Principal Environmental Scientist	for Marin
2	28-Aug-2023	Final	Dane Mallinson Principal Environmental Scientist	Ja Marin

Table of Contents

1.0 In	itroduction			1
	1.1	Background		1
	1.2	Objectives		1
	1.3	Regulatory Framework		2
	1.4	Previous Reports		2
2.0		scription		4
	2.1	Site Identification		4
	2.2	Surrounding Land Uses		4
	2.3	Topography and Draina	age	4
	2.4	Geology		5
	2.5	Acid sulfate soils		5
	2.6	Hydrogeology		5
	2.7	Site History		5 7 7
	2.8	Areas of Contaminants		7
	2.9	Previous Site Investiga		8
	2.10		tion and Validation Works	12
	2.11		diation and Validation Works	13
3.0		and Extent of Contaminat	ion	14
	3.1	Subsurface Conditions		14
	3.2	Summary of Identified	Contamination	14
		3.2.1 Fill/Soil		14
		3.2.2 Groundwater		16
	2.2	3.2.3 Data Gaps		16
4.0	3.3	Conceptual Site Model on Criteria		16 19
4.0	4.1	Soil Validation Criteria		19
	4.1	Imported Materials		19
	4.3	Waste Classification		19
5.0			uirements – Stage 2 Construction Works	20
6.0		ory Framework	direments Ctage 2 Construction Works	21
0.0	6.1	Council		21
	6.2	CLM Act (1997)		23
	6.3	WorkCover		23
	0.0	6.3.1 Asbestos		23
			Storage Tanks	23
7.0	Remed	· ·	3	24
	7.1	Objective		24
	7.2	Preferred Remediation	Strategy	24
	7.3	Remediation Methodolo	ogy	25
		7.3.1 Management	of Unexpected Finds	25
		7.3.2 Marker Mater	ial Installation	25
		7.3.3 Capping Mate	erial Installation	26
8.0		iction Management Proce		27
	8.1	Construction Environm	ental Documents	27
	8.2	Material Tracking Plan		27
	8.3	Erosion and Sedimenta		28
		_	of Excavations	28
		8.3.2 Stockpiling of	Materials	29
	8.4	Water Management		30
			r Management	30
	8.5		os Containing Materials	30
	8.6	Classification for On-Si		31
	8.7	Waste Classification fo	•	31
			sportation of Materials	32
	8.8	Air Quality Managemer	ıt	32

		8.8.1	Odours	3	32
		8.8.2	Dust	3	33
	8.9	Asbestos	Air Monitoring	3	34
	8.10	Noise an	d Vibration Management	3	34
	8.11	Site Acce	ess	3	35
	8.12	Work He	alth and Safety Signage	3	35
	8.13	Hours of	Operation	3	35
9.0	Validation	n Plan			36
	9.1	Project T	eam	3	36
	9.2	Soil Valid	dation Plan	3	36
		9.2.1	Unexpected Finds Material	3	36
		9.2.2	Underground Storage Tanks	3	37
		9.2.3	Imported Fill	3	37
		9.2.4	Stockpile Footprint Validation	3	38
	9.3		ssurance / Quality Control		38
		9.3.1	Sampling Methodology	3	38
		9.3.2	Field and Laboratory QA/QC	3	39
		9.3.3	Laboratory Analyses	3	39
		9.3.4	Decision Rules	3	39
	9.4	Validatio	n Reporting	4	10
	9.5	Long-Ter	m Environmental Management Pla		10
10.0	Conclusion	on			12
11.0	Referenc	es		4	13
Appendix	κA				
	Figures				Α
Appendix	κВ				
	Developn	nent plans	S		В
Appendix	k C				
	Investiga	tion Data			С
Appendix	Appendix D				
	Typical C	apping La	ayer Cross Sections		D

1

1.0 Introduction

1.1 Background

AECOM Australia Pty Ltd (AECOM) was commissioned by the City of Sydney (CoS) to prepare this Remedial Action Plan (RAP) for the proposed extension of Gunyama Park and adjacent George Julius Avenue North roadway to be developed as part of Stage 2 construction of the Gunyama Park Aquatic and Recreation Centre (GPARC) located at 17 Zetland Avenue, Zetland, NSW. The GPARC development forms part of the larger Green Square Precinct transformation project. The un-remediated development area of Stage 2 is referred to as 'the Site' with boundaries defined in **Figures 1 and 2**, **Appendix A**.

The Site is divided into two lots, with the southern portion owned by the City of Sydney and the northern portion owned by Lincon Development Pty Ltd (Lincon Development) (the land will be transferred to the CoS in late 2023). The Stage 2 construction works follow on from the Stage 1 development works which comprised construction of the Aquatic Centre (refer to **Figure 2** in **Appendix A**).

Remediation and validation works were completed within all of the Stage 1 development area and some parts of Stage 2, including a small portion of the Site where underground storage tanks (USTs) were removed. The remediated areas within Stage 2 are shown on **Figure 2** in **Appendix A**. Construction works within this part of the Stage 2 area will be undertaken in accordance with the applicable procedures in the *Gunyama Park Aquatic and Recreation Centre Long Term Environmental Management Plan* (JBS&G, 2020a) and is not subject to this RAP.

The Stage 2 development works will include the following:

- Landscaped setback areas across the Site. Gunyama Park will include a small amenities building, pathways, trees, growing media, lawn, playground, a skate bowl and some services (refer to Appendix B). The final details are subject to further design and development and;
- Construction of George Julius Avenue North on the eastern portion of the Site.

Based on the above development works, the proposed land uses at the Site will comprise:

- Recreational open space
- Commercial/industrial (construction of George Julius Avenue North roadway).

The Council development plans are provided in Appendix B.

1.2 Objectives

The objectives of this RAP are to:

- Summarise the findings of the previous stages of environment site investigations conducted at the Site (refer to **Section 1.4**);
- Present a plan of the anticipated remediation that will allow the planned development of the Site to
 proceed in a manner that protects human health and the environment, and to make the Site
 suitable for the proposed land uses (recreation); and
- Develop a plan to where possible, retain all excavated material onsite as part of the proposed development, consistent with the Stage 1 RAP (AECOM, 2016).

1.3 Regulatory Framework

This RAP has been developed with reference to the following guideline documents:

- The National Environment (Assessment of Site Contamination) Amendment Measure (NEPM, 1999 as amended 2013): provided the soil assessment criteria and were used to apply the NSW Environment Protection Authority (EPA) decision processes for assessing redevelopment of urban Sites and throughout preparation of this RAP;
- Guidelines for the Assessment and Management of Groundwater Contamination (NSW Department of Energy and Climate Change [DECC], 2007): followed throughout the site investigations and during preparation of this RAP;
- Australian and New Zealand Environment Guidelines for Fresh and Marine Water Quality (ANZG, 2018): considered for the assessment of groundwater conditions;
- Guidelines for Consultants Reporting on Contaminated Sites (NSW EPA, 2020): followed for preparation of this RAP;
- Sampling Design Guidelines (NSW EPA, 2022): considered during design of the validation sampling plan and determination of the Data Quality Objectives (DQOs);
- Waste Classification Guidelines (NSW EPA, 2014): used for characterising soil for disposal to an appropriately licensed landfill facility;
- Managing Land Contamination: Planning Guidelines, State Environmental Planning Policy (SEPP)
 55 Remediation of Land (Department of Urban Affairs [DUAP] and EPA, 1998): considered for the preparation of this RAP; and
- City of Sydney Contaminated Land Development Control Plan 2012: City of Sydney Council (14 December 2012).

The scope of remediation works and methodology presented herein is based on AECOM's current understanding of the nature and extent of contamination present at the Site and the provided Council development plans.

1.4 Previous Reports

The following reports were previously prepared for parts of the Site:

- Douglas Partners Pty Ltd (DP) (DP, 1995). Preliminary Contamination Assessment (summarised in WSP reports)
- Douglas Partners (DP, 2009). Phase 1 Contamination Assessment (summarised in WSP reports)
- WSP Environment & Energy Pty Ltd (WSP) (WSP, 2011a). Phase 1 Contamination Assessment, 106-116 Epsom Road, Zetland NSW. Prepared for Lincon Development Pty Ltd. May 2011;
- WSP (WSP, 2011b). Limited Phase 2 Contamination and Geotechnical Assessment, 106-116
 Epsom Road, Zetland NSW. Prepared for Lincon Development Pty Ltd. October 2011;
- AECOM (AECOM, 2016). GPARC Remedial Action Plan, Rev 0 15 June 2016;
- AECOM (AECOM, 2017a) Additional Remedial Action Plan Investigations Gunyama Park Aquatic and Recreation Centre, Rev C, 28 February 2017;
- El Australia Pty Ltd (El Australia) (El Australia, 2020a). Additional Site Investigation 106-116 Epsom Road, Zetland NSW, 22 July 2020;
- JBS&G Pty Ltd (JBS&G) (JBS&G, 2020a) Gunyama Park Aquatic and Recreation Centre Validation Report, 17 Zetland Avenue, Zetland, 9 December 2020 (Rev 2);
- JBS&G Pty Ltd (JBS&G) (JBS&G, 2020b) Gunyama Park Aquatic and Recreation Centre Long Term Environmental Management Plan, 132 Joynton Avenue, Zetland, NSW 11 November 2020.

The following geotechnical reports have also been prepared for the Site:

 Coffey Geotechnics (NSW) Pty Ltd (Coffey) (Coffey 2015) Additional Geotechnical Investigation Report, 106-116 Epsom Road, Zetland, NSW, 13 April 2015;

Commercial-in-Confidence

- Douglas Partners (DP, 2016). Report on Geotechnical Investigation, Gunyama Park Aquatic and Recreation Centre, Joynton Avenue, Zetland, 11 April 2016; and
- El Australia (El Australia, 2020b) Additional Geotechnical Investigation, 106-116 Epsom Road, Zetland, 15 July 2020.

The following reports were completed for adjoining land to the south of the Site:

- ADE (ADE, 2018) Phase II Detailed Site Investigation 94-104 Epsom Road MER-08-14531/DSI/v1d – 15 October 2018
- ADE (ADE, 2021a) Site Remediation & Validation Report Southern Basement, Landscaping Setbacks & Road Footprints - 94-104 Epsom Road 21.0234.VAL2.v3f – 28 October 2021
- ADE (ADE, 2021b) Site Remediation & Validation Report Northern Basement 94-104 Epsom Road - MER-08-18948 VAL1.v2f – 28 October 2021

Remedial Action Plan - Gunyama Park Stage 2 and George Julius Avenue North - Zetland, NSW Commercial-in-Confidence

2.0 Site Description

2.1 Site Identification

The current layout of the Site is presented on Figure 2 in Appendix A. Currently, the Site consists of a vacant lot, and is temporarily being used as a stockpile area for a neighbouring construction site. The Site was historically occupied as a racetrack, stables and paddocks with a tyre and rubber factory located on the same property but to the south.

The Site identification details are presented in the following table:

Site Identification Details Table 1

Item	Description			
Site Owners	City of Sydney (Lot 11 DP 1271716) Lincon Development (Lot 1 DP 1265902)			
Site Address	13 George Julius Avenue, Zetland	Lot 1 DP 1265902		
	17 Zetland Avenue, Zetland	Part Lot 11 DP 1271716		
Site Survey	Refer to Appendix B			
County and Parish	County of Cumberland, Parish of Alexa	ndria		
Local Government Authority	City of Sydney			
Current Zoning	SP2 Community Facility			
Proposed Land Use	Recreation mixed use, public open space (Gunyama Park), and roadway (George Julius Avenue North)			
Geographical Coordinates (Australian Map Grid)	N 6246516, E 334305	N 6246516, E 334305		
Site Elevation (m AHD)	Approximately 20 m AHD			
Stage 2 Area	0.87 hectares (ha)			
Site Area	0.7 ha			
Site Location	Figure 1			
Site Layout and Former BH Locations	Figure 2			

2.2 Surrounding Land Uses

The Site is currently surrounded by the following land uses:

- North: Zetland Ausgrid Depot (recently sold to be redeveloped into high density residential apartments), followed by high density residential apartments and open space.
- East: Former car dealerships and service centres (vacant), followed by Link Road and Southern Cross Drive.
- South: A Meriton residential construction site followed by Epsom Road.
- West: Gunyama Park Sports Field (synthetic sports field) and then Gunyama Park Aquatic Centre

2.3 Topography and Drainage

The Site is located in an area which is relatively flat and elevated approximately 20 m AHD. The surrounding land in the vicinity of the Site displays a gentle slope (down) to the west towards Alexandra Canal (located approximately 1.4 km to the south west of the Site). There are no natural drainage features at the Site and any stormwater generated at the Site is expected to drain into the Council stormwater drainage system present along the recently constructed portion of George Julius Avenue as well as Zetland Avenue and Joynton Avenue.

5

2.4 Geology

The regional geology is composed of Quaternary medium to fine grained "marine" sand with podsols (Sydney 1: 100 000 Geological Series Sheet 9130 1st Edition 1983).

The Site is located in the northern portion of the Botany Basin. The Botany Basin is considered a superimposed structural basin within the larger Cumberland Basin (DMR, 1980). The geology of the Site and surrounding area is characterised by Quaternary aged interbedded marine sands, peaty sands, peat and mud (Botany Sands), underlain by the Triassic Hawkesbury Sandstone. The Botany Sands are expected to be greater than 10 metres thick in the site area and thicken to up to 80 metres in the central portion of the Botany Basin, south of the Site.

Reference to the Sydney 1:100,000 Soil Landscape Series Sheet 9130 indicates that the Site is located in an area mapped as being "disturbed terrain". Disturbance is defined as removal or burial of soil, or landfill with soil, rock, building and waste materials. The area is originally low lying swampland (Waterloo Swamp), which was historically filled to raise surface levels.

2.5 Acid sulfate soils

The Botany Bay 1.25 000 scale acid sulfate map of the area indicated that no known occurrence of acid sulfate soils is identified for the Site. The Site is also mapped as Class 5 acid sulfate risk in the Sydney Local Environmental Plan (LEP) 2012 acid sulfate soil risk maps. Class 5 mapped land requires an acid sulfate soil management plan (ASSMP) where 'works are within 500 metres of adjacent Class 1, 2, 3 or 4 land that is below 5 metres Australian Height Datum and by which the watertable is likely to be lowered below 1 metre Australian Height Datum on adjacent Class 1, 2, 3 or 4 land'. The works will not cause the watertable to be lowered below 1 metre AHD on adjacent mapped Class 1, 2, 3 or 4 land.

It was however found that potential acid sulfate soils (PASS) were present in the western portion of the Stage 1 construction during previous investigations (AECOM, 2016). Acid sulfate soils were confirmed and managed under an ASSMP during construction works during Stage 1 (JBS&G, 2020a). PASS were present as organic clays and sandy clay in the western portion of the Stage 1 construction site and were not identified elsewhere. Natural soils beneath the fill at the Site (non-PASS) were found to comprise sand to the maximum extent of boreholes (4.5 to 6.45 m below ground level [bgl]) in previous investigations (refer to Section 2.9).

Field acid sulfate soil screening tests were undertaken by Douglas Partners (2023) at six boreholes at the Site (refer to Table 3 in Section 2.9). The results indicated PASS was likely present at two boreholes (BH205 and BH206) within the clayey sand fill near the centre of the Site at a depth of 2.4-2.5 m bgl. As excavation will not be undertaken in that part of the Site, and the maximum depth of excavation at the Site is expected to be 1 m bgl no further investigation is considered required. An acid sulfate soil management plan (ASSMP) will be prepared to detail procedures should fill be encountered during excavation that displays signs of acid sulfate soils.

2.6 Hydrogeology

Groundwater within the Site is present within the Botany Sands aquifer and sometimes within shallow fill, depending on the depth of fill and local groundwater levels (DP, 2016 and AECOM, 2016). Groundwater levels within the unconfined Botany Sands aquifer are variable but typically shallow (within five metres of ground surface) when not influenced by localised pumping. The water table depth and direction of flow in the region is influenced by local factors such as distance from recharge and discharge areas, local development and pumping.

Recharge to the Botany Sands aquifer is via direct rainfall, locally enhanced by rainfall runoff and via a series of ponds in Moore Park and Centennial Park (located approximately 1 km to the north east of the Site). Locally groundwater flows from the Botany Sands and discharges to Alexandra Canal and Botany Bay. Natural groundwater fluctuations can cause the water table to rise by up to 0.5 metres following high rainfall events and can also be influenced by tidal fluctuations and seasonal variations. In 2014, groundwater levels were relatively high across eastern Sydney within the Botany Sands aquifer particularly when compared to levels during the recent drought.

Gunyama Park Stage 2 and George Julius Avenue North Remedial Action Plan – Gunyama Park Stage 2 and George Julius Avenue North - Zetland, NSW Commercial-in-Confidence

Groundwater quality within the unconfined Botany Sands aquifer is of variable quality but is typically of low salinity and moderately acidic. The shallow water table is susceptible to contamination because of its location in an urban and industrial environment with no confining layer. Variations in the native groundwater quality are attributed to a number of factors including the presence of peaty sediments, industrial development, leakage from sewer systems and landfills.

The Site and surrounds is within the Botany Groundwater Management Zone 2, which bans domestic use of groundwater due to contamination (http://www.water.nsw.gov.au/water-management/water-quality/groundwater/Botany-Sand-Beds-aquifer).

Groundwater levels recorded during AECOM (2016) (refer to **Appendix C**) were only observed at one monitoring well (MW205) as the other in the Site was dry at the time. This is likely due to temporary dewatering works occurring at the time to the west and northwest of the Site on the Green Square Town Centre construction site (on the opposite side of Joynton Avenue) and possibly related to the Mirvac basement excavation/construction works to the south of the Site. The inferred groundwater flow is towards the west.

2.7 Site History

The site history was detailed in the AECOM (2016) RAP and is summarised in this section. The Site was formerly part of a natural wetland that was drained and filled for development of a racecourse in the 1930s. The Site was briefly used as part of an ordinance unit and military camp during WWII and then purchased by Nuffield (Australia)Pty Limited (car manufacturers) in the 1950s. The northern part of the Site was then further filled in the 1960s and used as open space and a car park. The northern part of the Site was then used as stockpiling area for a neighbouring construction site in 2022.

The southern part of the Site was part of a property operating as a printing business during the 1970s to 1990s until it became part of the City of Sydney Council in 1998 and used for a works depot until demolished in around 2018. A stormwater detention basin was then excavated and constructed within the southern part of the Site and a UST was removed during these works (refer to **Section 0**).

The land surrounding all sides of the site was also subject to historical filling and used for a variety of commercial and industrial land uses. These included car manufacturing (British Motor Corporation [BMC] plant), Defence Navy Supply Centre, the Royal South Sydney Hospital, Ingot Mills Pty Ltd factory (textile manufacturing) and the Olympic Tyre and Rubber Company.

2.8 Areas of Contaminants of Concern

The areas and contaminants of concern based on the historical information and former and current surrounding land uses are summarised in **Table 2** below.

Table 2 Areas and Contaminants of Concern

Area	Activity	Contaminants
All of the Site	Uncontrolled spoil disposal (potentially liquid and solid) in the 1900s and between 1950s and 1970.	Asbestos, metals, PAHs, total recoverable hydrocarbons (TRH), benzene toluene ethylbenzene xylene (BTEX), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and industrial solvents (semi volatile organic compounds [SVOCs] and volatile organic compounds VOCs)
	Racecourse construction and operation, the use of ash on the racecourse surface	Metals, PAHs, OCPs and OPPs
	Ordnance storage or use during WWII	There is no Unexploded Ordnance (UXO) reported on the Department of Defence website: www.defence.gov.au/uxo/where is uxo
Southern portion of the Site	Unknown fuel storage and dispensing (known fuel storage and dispensing on southern boundary of the Site [shown on Figure 2, Appendix A]. UST was removed and validated, although impacts not fully delineated).	Lead, TRH, BTEX and PAHs
	Industrial manufacturing (rubber), printing and depot use	Metals, TRH, BTEX, PAHs, industrial solvents (SVOCs and VOCs),

Area	Activity	Contaminants
Up-gradient off-site sources	Industrial manufacturing, electrical substations, car servicing centres/mechanics and filled land from up-gradient off-site sources	Metals, TRH, BTEX, PAHs, cyanide, industrial solvents (SVOCs and VOCs), PCBs and per- and poly-fluoroalkyl substances (PFAS).

2.9 Previous Site Investigations

The AECOM (2016) RAP summarised the findings of previous investigations and included an additional investigation undertaken by AECOM. An Additional Site Investigation by EI Australia was also prepared for the property at 106-116 Epsom Road (EI Australia, 2020). It is noted that the EI Australia report did not include the collection and analysis of any samples within the Site but reviewed the previous data and included investigation of adjoining block to the south-east of the Site.

The results of these previous investigations in the context of the Site are summarised in **Table 3** below and tabulated in **Table C1** to **C7** in **Appendix C**. The historical borehole and groundwater monitoring well locations completed within the Site are shown on **Figure 2** in **Appendix A**. Results of the investigations indicated that metals, polycyclic aromatic hydrocarbon (PAH) and asbestos impacts were identified in fill across the Site. The fill appears to extend off-Site to the south west based on the findings of EI Australia (2020) report.

Table 3 Previous Site Investigations

Report	Investigation Summary
DP, 1995	Five test pits (sample locations unknown) were sampled to 2.8 m bgs across the part of the Site which now comprises Lot 1 DP 1265902 in the Site. The property was described as a grassed flat area used for the storage of scaffolding and similar light construction materials at the time of the sampling. The following results were reported: Fill logged as loose grey and black sand with steel cables, brick, plastic, concrete, car tyres and other anthropogenic materials. Fill was underlain by sands. Samples were analysed for metals, total petroleum hydrocarbons (TPH) and BTEX and were less than the relevant criteria at the time – ANZECC (1992). There was no information on groundwater.
DP, 2009	Five boreholes (DP-BH1 to DP-BH5) were drilled and sampled across Lot 1 DP 1265902 of the Site (refer to Figure 2 in Appendix A). The boreholes were sampled to 3 m bgl and reported following results: Fill described as per DP 1995 report. Benzo(a)pyrene (B[a]P) concentrations up to 6.6 mg/kg and total PAH concentrations up to 46.1 mg/kg. Zinc concentrations up to 280 mg/kg and copper concentrations up to 220 mg/kg. All other results were less than the adopted criteria. There was no information on groundwater.

Report	Investigation Summary
WSP , 2011b	 Three boreholes (BH05, BH12 and BH09) were sampled using a solid stem auger within Lot 1 DP 1265902 of the Site (Figure 2 in Appendix A). It is noted that an additional nine boreholes were completed within the remainder of property (Lot 1 DP 830870) to the south of the Site. The following results were reported for the three boreholes within the Site: Fill with silty sand with bricks, tyre, steel cables, plastic, glass and concrete to depths of 4.2 m bgs (BH05), 4.0 m (BH09) and 2.7 m (BH12). All PID VOC readings were less than 1 part per million (ppm). Analysed selected soil samples for metals, TPH, BTEX, PAHs, volatile organic compounds (VOCs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs). All results were less than the adopted assessment criteria at the time (NEPM [1999] Health Investigation Level (HIL) E – recreational/open space, NSW EPA (1994) Threshold concentrations for sensitive land use and NEPM (1999) provisional phytotoxicity based investigation levels (PBILs). One groundwater well was installed to 6 m bgl and screened across fill and sand (GW04). It is noted that three wells were installed to the south of the Site (GW01 to GW03). GW04 was sampled and analysed for dissolved metals, TPH and VOCs and the results reported included: The standing water level (SWL) was 3.16 m below top of casing (bTOC) and the Relative Level (RL) was 16.973 m AHD. Measured groundwater parameters: pH of 4.68, Redox 85.6 mV and conductivity 0.289 mS/cm. Dissolved copper (3 μg/L) and zinc (10 μg/L) concentrations exceeded the ANZECC 95% trigger values for marine ecosystems of 1.4 μg/L and 8 μg/L respectively. Bis (2-ethylhexyl) phthalate (42 μg/L) was detected above the limit of reporting (LOR).
AECOM, 2016	AECOM completed an additional investigation of the overall GPARC to fill data gaps for the purposes of informing the RAP. The investigation included a Phase 1 desktop assessment of what was known as the Lincon Development site (Lot 1 DP 1265902) and a Phase 2 soil and groundwater data gap investigation of the overall GPARC, including the Site. The additional investigation was reported in the AECOM (2016) RAP and the scope and results specific to the Site are summarised below: The investigation locations within the Site included drilling of eight boreholes (BH214 to BH221) and installation and sampling of two groundwater monitoring wells MW204 and MW205 (in BH216 and BH219 respectively). Fill and natural underlaying sands were consistent with previous investigations, with fill encountered to depths ranging from 2.4 to 3.3 m bgl Field PID VOC screening results were all less than 10 ppm and no odours were noted in soils MW204 was dry (installation depth 6 m below top of casing [toc]) and the standing groundwater level (SWL) in MW205 was 4.32 m bgl Selected soil samples were analysed for heavy metals, TRH/BTEXN, PAHs and asbestos and the groundwater sample was analysed for heavy metals, TRH/BTEXN, PAHs and VOCs The soil and groundwater results are summarised below: Soil analytical results which exceeded the adopted NEPC 2013 human health-based (HIL-C) criteria were: Lead in BH214_2.0-2.1 and BH216_1.5-1.6 at concentrations of 965 and 729 mg/kg respectively (criteria 600 mg/kg) Benzo(a)pyrene TEQ in BH214_2.0-2.1 and BH216_1.5-1.6 at concentrations of 4.9 and 11.1 mg/kg respectively (criteria 3 mg/kg)

Report	Investigation Summary
	 Soil analytical results which exceeded the NEPC 2013 ecological based (EIL and ESLs for open space) criteria were: Copper in BH214_2.0-2.1 and BH216_1.5-1.6 at concentrations of 701 and 364 mg/kg respectively (criteria 60 mg/kg) Nickel in BH214_2.0-2.1 at concentration of 105 mg/kg (criteria of 30 mg/kg) Zinc concentrations in BH214_2.0-2.1 (629 mg/kg), BH216_0.5-0.6 (99 mg/kg), BH216_1.5-1.6 (646 mg/kg), BH218_2.0-2.1 (91 mg/kg), BH219_0-0.1 (73 mg/kg), BH219_1.5-1.6 (78 mg/kg) and BH221_1.0-1.1 (83 mg/kg) (criteria 70 mg/kg) Benzo(a) pyrene concentrations in BH214_1.0-1.1 (1.1 mg/kg), BH214_2.0-2.1 (3.3 mg/kg) and BH216_1.5-1.6 (7.5 mg/kg) (criteria 0.7 mg/kg) TRH_C16-C34 concentrations in BH214_2.0-2.1 (630 mg/kg) and BH216_1.5-1.6 (530 mg/kg) (criteria 300 mg/kg). Friable asbestos fibres were detected in one soil sample (BH214_2.0-2.1) All groundwater results were less than the adopted assessment criteria. The findings aligned with those from previous investigations, noting that fill material
	across the site was impacted with metals, PAHs and asbestos. Furthermore, it stated that management measures like the placement of an appropriate growing medium over the fill would need to be implemented.
Coffey, 2016	Coffey undertook an additional geotechnical investigation of the overall GPARC. The scope included three boreholes (BH118w, BH122w and BH130) and seven cone penetration tests (CPTs) (CPT117, CPT118, CTP121 to 124 and CPT126) within the Site. Two of the boreholes were converted to groundwater monitoring wells (BH118W, BH122W). The following observations of fill were recorded in each borehole: • BH118w – fill to 2.5 m bgl comprising crushed sandstone to 0.4 and then dark brown silty sand with basaltic gravel, • BH122w – fill to 4 m bgl comprising fine to coarse sand and gravel to 0.5 m and then silty sand with trace gravel. • BH130 – fill to 2.5 m bgl with fine to coarse sand and gravel sandy clay with sandstone gravel to 1.4 m bgl and then coarse sand with some sandstone gravel. Depth to groundwater was reported as: • BH118w: 4.3 m / 16 m AHD • BH122w: 4.1 m /15.8 m AHD.
EI, 2020	EI Australia undertook an Additional Site Investigation which included part of the Site (Lot 1 DP 1265902) and another parcel of adjoining land at 106-116 Epsom Road, Zetland (Lot 21 to 24 in DP 1265903)(southeast of the Site, refer to Figure 4 in Appendix A). The objective of the investigation was to close out data gaps to further characterise the site soils prior to remediation and bulk excavation. The scope of works within the Site included a review of previous investigations (WSP, 2012 and DP, 2009). A total of 15 boreholes were drilled and sampled within the land at 106-116 Epsom Road and were not located within the Site. The soil samples were analysed for heavy metals, TRH, BTEXN, PAHs, OCP, OPP, PCB and asbestos. The results from the 15 boreholes were: Fill with inclusions of demolition waste was encountered across the site with an average depth of 1.4 m bgl and a maximum depth of 3.6 m bgl CoPC exceeding the adopted soil investigation criteria in two samples, one for OCPs (Heptachlor) and another for total PAHs.
DP, 2023	DP undertook an additional geotechnical investigation at the Site in 2023. The investigation included collection of a total 20 acid sulfate soils for field acid sulfate soil screening tests from eight boreholes, including six boreholes within the Site (BH201 to BH206, shown on Figure F2 in Appendix A). One sample had a strong positive result for PASS (BH205 at 2.4-2.5 m bgl) and one had a less positive result for PASS

Gunyama Park Stage 2 and George Julius Avenue North Remedial Action Plan – Gunyama Park Stage 2 and George Julius Avenue North - Zetland, NSW Commercial-in-Confidence

Report	Investigation Summary
	(BH206 at 2.4-2.5 m bgl). The two samples were of fill comprising dark grey sand and clayey sand with organic and sulfuric odours noted. Laboratory analysis (Suspension Peroxide Oxidation Combined Acidity and Sulfur [SPOCAS] or Chromium Reducible Sulfur [CRS]) was not undertaken on the samples.

2.10 Previous Site Remediation and Validation Works

Additional site investigations and validation works were undertaken as part of the Stage 1 construction and remediation works and were documented in the Stage 1 Validation Report (JBS&G, 2020a). The remediation works included the removal and validation of two USTs within the Site. The two USTs were identified during the construction of the stormwater detention basin to the east of the Stage 1 boundary. The USTs were designated as unexpected finds (designated identification number UF02) and were investigated and validated as part of the Stage 1 works due to being located on the boundary of the Stage 1 construction site. The location of the former USTs within the Site is shown on **Figure 2** in **Appendix A**.

Commercial-in-Confidence

The Stage 1 validation report (JBS&G, 2020a) stated that the two USTs were found to contain around 11,000 L of liquid (product and hydrocarbon wash water) and found to be in poor condition. The liquid was removed from the tanks and disposed to a licensed liquid waste facility and the tanks disposed to an appropriately licensed facility. Following removal of the USTs the excavation was advanced to a 9 m x 6.7 m x 2.5 m deep excavation. The excavated material was noted to be stained and had a strong hydrocarbon odour. The excavated material was classified as General Solid Waste (GSW) and disposed to a licensed landfill.

Validation samples were collected from the walls and base of the excavation respectively. The excavation was extended to the west to the extent practicable and further validation samples collected. The resultant excavation was 13 m x 7.5 m x 3.1 m. The validation samples are shown on **Figure 3** in **Appendix A**.

To further delineate the impacts, three boreholes (BHA1, BHA2 and BHA3) were advanced and eight primary samples were analysed. Borehole BHA1 was located within the Site and the other two were off-Site to the west. Strong hydrocarbon odours were observed in BHA1 within natural sands at depths of 1.5 to 4 m bgl with PID VOC readings ranging from 2.9 to 6.3 ppm.

The soil validation samples were analysed for TRH, lead, VOCs, BTEX, phenols and PAHs. Analytical results exceeded the validation criteria in some samples from the western and southern walls for TRH and PAHs and in borehole BHA1 for TRH. The soil results are presented in **Table C8** in **Appendix C** and criteria exceedances are listed in **Table 4**.

The excavation could not be extended further south due to a retaining wall and therefore the soil impacts in the southern excavation wall remain within the Stage 2 area/ the Site. The Site Audit Report for Stage 1 (Senversa, 2020) confirmed that the UST from UF02 was removed and that this area was not delineated in full.

Table 4 JBS&G (2020a) Stage 1 Soil Validation Criteria Exceedances for UF02

CoPC	Samples	Concentration (mg/kg)	Criteria (mg/kg)	
Excavation validation	on samples of UF02			
Carcinogenic PAH TEQ	UST2-32S (0.3)	3.851	3 (NEPC 2013, HIL-C)	
TRH >C10-C16 fractions	UST2-3W(2.2)A, UST2_6W(2.4)A, UST2- 7S(0.4), UST2-9S(2.3), UST2- 12S(2.2) and UST2-34S(2.2)*	2,600 to 11,000	1,000 (NEPC 2013, Recreational Management Limit)	
TRH >C16-C34 fractions	UST2-9S and UST2-12S	5,400 and 3,400	2,500 (NEPC 2013, Recreational Management Limit)	
Additional delineation of UF02				
TRH >C10-C16 fractions	A1_2.0	4,500	1,000 (NEPC 2013, Recreational Management Limit)	

2.11 Previous Off-site Remediation and Validation Works

Remediation and validation works were completed on the parcels of land directly adjacent to and up to the southern boundary of the Site (now SP105223 and Lot 11, 14 and 15 in DP1277812) as part of the Meriton redevelopment works which included the construction of apartments with a basement and the southern part of George Julius Avenue which adjoins the Site. The following validation reports were prepared:

Commercial-in-Confidence

- ADE (2021a) Site Remediation and Validation Report Southern Basement, Landscaping Setbacks and Road Footprints. 28 October 2021 (prepared for Karimbla Construction Services Pty Ltd)
- ADE (2021b) Site Remediation and Validation Report Northern Basement, 94-104 Epsom Road Zetland, NSW (prepared for Karimbla Construction Services Pty Ltd)

Remediation and validation works were undertaken by ADE (2021a) immediately south of the UST excavation described in **Section 2.8** within George Julius Avenue. The remediation works were the excavation and validation of a benzo(a)pyrene hotspot at a sampling location designated TP3. TRH was not detected in the soil samples from the excavation (3 m x 3 m x 1 m excavation dimension). Another borehole (BH03) was undertaken 15 m south of the Site boundary and TRH impacts were not detected within the borehole. Validation works undertaken within the footprint of the apartment basement of SP105223 by ADE (2021b) did not identify TRH impacts in groundwater or soil. The boundary of the ADE validation works (ADE, 2021a and 2021b) are shown on **Figure 4** in **Appendix A** and the summary of results are included in **Table C8** in **Appendix A**.

Based on the above information TRH impacts that remained on the southern wall of the UST excavation at UF02 within the Site are unlikely to have extended off-Site.

3.0 Nature and Extent of Contamination

3.1 Subsurface Conditions

The previous site investigations (refer to **Section 1.4**) reported that deeper fill material is present on the Site. The investigation conducted by AECOM (2016) provided the following lithological summary:

- Road base gravels underlying pavements followed by fill consisting of sand, gravel and clay with demolition type waste (brick and concrete) to 1 - 2 m bgl. The demolition type fill was underlain fill similar to the fill in the Stage 1 area, but with lower proportions of slag, ash and metals. No obvious odours were observed during sampling of the fill.
- The fill was underlain by poorly graded fine to medium sand and no clays were encountered to the depth of the boreholes.

3.2 Summary of Identified Contamination

3.2.1 Fill/Soil

Based on the findings of the site investigations (AECOM, 2016), field observations and the analytical data, it appears that there have been two generations of filling at the Site:

- Fill Generation 1 prior to 1910 and contains waste with slag, ash and metal. The material filled the
 former Waterloo swamp and dam that was located within and surrounding the Site. The fill was
 deepest in the west near Joynton Avenue and shallowest in the south east of the Site. The highest
 concentrations of carcinogenic PAHs and lead were in the western part of the Site and highest
 towards Joynton Avenue. The depth of fill adjacent to Joynton Avenue is generally 3-3.5 m depth;
 and
- Fill Generation 2 From the mid-1950s, Lot 1 DP 1265902 was filled with a mound of material that sits above the Generation 1 fill. The Generation 2 Fill consists of soil mixed with demolition and tyre waste. A conceptual cross section illustrating the stratigraphy at the Site is provided as Figure 5 (Appendix A).

The fill is impacted mainly with lead, copper, nickel, zinc, PAHs, asbestos and more isolated areas of TRH. Exceedances of the adopted HILs for carcinogenic PAHs and lead occurred in some areas of the Site. As reported by AECOM (2016), lead and PAH concentrations were significantly lower in the Generation 2 fill present on Lot 1 DP 1265902 and validates the concept that different generations of filling have occurred at the Site. This distribution has implications of how material can be excavated and separated for potential reuse at the Site.

The previous investigations summarised in **Section 2.9** identified lead and benzo(a)pyrene concentrations exceeding the HIL C criteria. Copper, nickel, zinc, benzo(a)pyrene and TRH C_{10} - C_{34} fractions were also found to exceed the adopted ecological assessment criteria in fill. TRH C_{10} - C_{34} fractions also exceeded the adopted ecological assessment criteria and management limits in natural soils in the southern most portion of the Site (JBS&G, 2020a). Although asbestos was only detected in one sample during investigations by AECOM in 2015 within the Site (BH2014) (AECOM, 2016), ACM was detected in four samples during investigations in the adjoining Stage 1 area and found to be widespread during construction. Due to Stage 1 having the same type of fill as the Site and due to the limitations associated with detecting asbestos in boreholes (test pit excavations better at identifying asbestos in soil) it is concluded that asbestos is present throughout the fill in numerous parts of the Site.

There was no Australian Standard Leaching Procedure (ASLP) or Toxicity Characteristic Leaching Procedure (TCLP) data for the boreholes sampled within the Site to directly access the leachability of CoPC within the Site fill. No further leaching testing is however considered required to inform the remediation methodology given the following reasons:

• The deeper fill (~1.5 to 3 m bgl) within the Site is consistent with fill within the Stage 1 area which had a similar composition (including containing ash and slag) and concentrations of CoPC in a similar range and magnitude of order (see **Figure 4** in **Appendix A** for the cross-section showing fill layers of the Site and Stage 1);

15

- An assessment of the leachability and potential negative impacts on groundwater quality and receptors by retaining fill in-situ under the capping in Stage 1 was undertaken by JBS&G (2020) and found that:
 - the highest concentrations of CoPC in groundwater were in the western area of Stage 1 where fill has been historically at or partly submerged by groundwater;
 - although the ASLP results exceeded the adopted ecological criteria, the ASLP tests present worst-case scenario for leachate generation given the intensive aggressive agitation when compared to a compacted fill profile with minimal infiltration. The criteria are very conservative being direct contact with aquatic ecosystems and doesn't consider dilution effects between the Site and the discharge point; and
 - the 'cap and contain' remedial strategy was considered appropriate in reducing surface water infiltration and no further remediation method was considered required to reduce leachability of CoPC.
- As stated in the Site Audit Statement for the Stage 1 remediation and validation (Senversa, 2020), the fill has been in place for an extensive period (>100 years) and has resulted in relatively low concentrations of PAHs and heavy metals in groundwater
- The groundwater beneath the Site is likely below the depth of the fill across the most of the Site and the capping and marker layer will further reduce surface water infiltration into the fill.

It is noted that limited soil samples were analysed for OCPs historically within the Site and the results for all three samples were less than the LOR. Based on the results of investigations on the surrounding sites including Gunyama Park Aquatic and Recreation Centre (AECOM, 2016) and on 106-116 Epsom Road to the south (EI, 2020), OCP contamination in fill above the LOR was only identified in one sample and was not located near the Site boundary. There is no evidence of a concrete slab across the Site in historical aerials with the exception of the southern portion of the Site. Shallow soils within the southern portion of the Site were excavated and removed from the Site as part of construction of a temporary detention basin. As such no further assessment of OCPs within fill at the site is considered necessary unless an unexpected find such as buried waste (drums or containers with residue) are discovered during excavations.

It is noted that the HIL C criteria is based on direct dermal (i.e. absorption of contaminants through the skin), inhalation of dust and incidental ingestion of soil and dust particles. Design specifications indicate that a minimum of 500 mm cap comprising validated suitable clean fill (as defined in Section 4.2) underlain by a marker material will be implemented. This cap layer will mitigate contact with the underlying fill materials. Therefore, it is considered that the limited exceedances of the HIL C do not preclude the soils from being suitable for reuse as long as appropriate long term management actions are implemented to maintain the integrity of the capping layer.

As an appropriate growing medium will be created by the importation of a minimum of 500 mm validated suitable clean topsoil and imported fill (and deeper where trees are planted) the contaminated fill would no longer be considered a risk to the ecological receptors in the redeveloped park.

As described in Section 2.9, two USTs were removed and validated within the southern portion of Lot 11 DP 1271716 in the Site during the Stage 1 remediation works by JBS&G (2020a). Not all the hydrocarbon impacted soils on the southern wall of the excavation could be removed due to excavation restrictions caused by the retaining wall on the Site boundary. As such a narrow strip (approximately 1.5 m wide) of hydrocarbon contaminated soil (TRH C₁₀- C₃₄ fractions) remains on the southernmost boundary of the Site. Based on the validation data reported in JBS&G (2020a) the contamination is at depths of between 1.5 and 4 m bgl in natural sands (strong hydrocarbon odours) and comprises TRH C₁₀-C₁₆ at concentrations ranging between 3,400 to 5,400 mg/kg and TRH C₁₆-C₃₄ at concentrations ranging between 2,600 to 11,000 mg/kg (exceeding NEPC 2013 management limits and ESL). As described in Section 2.10, remediation and validation works undertaken within the off-Site development to the south did not identify hydrocarbon impacts in soil.

The TRH concentrations did not exceed the adopted vapour intrusion criteria for commercial/industrial land use or for intrusive maintenance workers. As such the TRH contamination does not pose a vapour risk to the use of the future amenities building or underground services and associated pits.

As the contamination is semi-volatile (low vapour intrusion risk), isolated on-site and previous investigations did not identify down-gradient hydrocarbon impacts in groundwater, it would be appropriate to be capped and maintained on site.

3.2.2 Groundwater

All reported concentrations of the CoPC the Site were reported to be less than the adopted human health and ecological criteria, and less that the laboratory LOR. It should be noted only two monitoring wells were installed in the Site (MW204, MW205) and MW204 was dry at the time of sampling.

As noted in the 2016 Stage 1 RAP (AECOM, 2016), based on the reported soil contaminant and groundwater concentrations on this part of the Site, adverse impacts to groundwater in the Site are not likely. Therefore, it was stated that further investigation or management of groundwater at the Site was not considered to be warranted. There are potential semi-volatile hydrocarbon groundwater impacts that have since been identified in the southern portion of the Site where the former USTs were removed. This hydrocarbon contamination is localised within the Site to an approximately 1.5 m wide strip on-Site. As described in **Section 2.11**, remediation and validation works were undertaken within the off-Site development up to and immediately adjacent to the southern property boundary. As the validation works did not identify hydrocarbon impacts, they are not considered to extend off-site to the south.

3.2.3 Data Gaps

It is noted that due to changes in the development boundary (extending further east than originally planned) there is a spatial data gap in the Site within Lot 1 DP 1220949 and southeast most portion of Lot 1 DP 1239679 where no previous soil sampling has been completed. This area of the Site will be constructed as a road (George Julius Avenue North) with around 3 m of fill placed above the existing level. As stated above in **Section 3.2.1** there are potential hydrocarbon impacts in soil and groundwater localised at the southernmost extent of the Site. No down-gradient hydrocarbon impacts were identified in groundwater by JBS&G (2020b) to the west. The area south of the Site has since been constructed as George Julius Avenue and a residential apartment with a basement. No further delineation is required as:

- the impacted soil will be located at depths greater to or equal to 3 m bgl and below the depth of the service trenches
- the source of the contamination (UST02) was removed to the extent practicable on-Site
- the soil results didn't exceed the vapour intrusion criteria
- there were no down-gradient hydrocarbon impacts in groundwater identified
- construction, including remediation and validation of George Julius Avenue to the south has been completed with no hydrocarbon impacts identified.

As stated in **Section 3.2.1**, there is no existing TCLP data for the Site and as such further sampling and analysis for waste classification purposes will be required during remediation when excavated spoil is required to be disposed off-site.

3.3 Conceptual Site Model

The purpose of a Conceptual Site Model (CSM) is to assess risks potentially present at the Site by identifying and describing contaminant sources, transport mechanisms, exposure pathways and sensitive receptors associated with the Site. The CSM is based on AECOM's review of the previous reports and results from the investigation conducted by AECOM in 2015 (AECOM, 2016), validation works completed by JBS&G (2020a) and reports prepared for the adjacent development site to the south of the Site (ADE, 2021a and 2021b). The CSM developed for the Site is summarised in **Table 5** below.

Commercial-in-Confidence

Table 5 Conceptual Site Model

Consideration	Details
Site Setting	The Site is located in a former commercial/industrial area. The future land-use is to change to recreational and open space with a playground and parkland areas and a roadway.
Contaminants and Areas of Concern	The main contaminants of concern in soil are metals (mainly lead, nickel and zinc), PAHs, TRH and asbestos. The source of contamination is related predominantly to historical uncontrolled placement of impacted fill across the Site, rather than historical operations.
Sources of contamination	 The following contamination activities are known or suspected to have occurred: Deposition of uncontrolled contaminated fill, including ash, slag and demolition waste from unconfirmed sources. Leaks from two former USTs Off-site sources of groundwater contamination from surrounding industrial and filled sites (including the discussed Defence site to the north).
Groundwater Depth and Flow Direction	 Groundwater conditions on the Site are summarised below: Shallow groundwater was encountered at a depth of 4.3 m AHD and within sand at MW205, with the other monitoring well (MW204) being dry at the time of sampling, likely due to local dewatering occurring to the west-northwest of the Site in 2015. The flow direction was inferred to be towards the west.
Extent of Groundwater Impacts	 No sheens LNAPL or DNAPL were encountered in the well monitored. All concentrations of TRH and BTEXN were less than the human health based groundwater assessment criteria (GAC). All concentrations of CoPC were less than the ecological based GAC. There may be localised semi-volatile TRH contamination in groundwater at the southernmost extent of the Site
Extent of soil impacts	 Some concentrations of lead and benzo(a)pyrene TEQ (LOR) in fill exceeded the HIL for open space (AECOM, 2016). Asbestos was detected in one sample and is concluded to be present randomly in fill on Site (AECOM, 2016). Concentrations of BTEXN and TRH were below the adopted HSLs. Concentrations of zinc, nickel, copper, benzo(a)pyrene and TRH C16-C34 exceeded the ecological based criteria (DP, 2009; WSP, 2011b; AECOM 2015). Localised semi-volatile TRH contamination exceeding the ecological based criteria and management limits remains in the southernmost portion (~1.5 m wide strip) of the Site and could extend off-Site to the south.
Potential Transport Mechanisms and Exposure Pathways for Contaminants	 dermal contact or ingestion of contaminants in soil during construction or post development. Dispersion of dust in the wind from unsealed surfaces during construction Uptake of contaminants by plants and ecological receptors in soil post development. Off-site groundwater migration.
Potential Receptors of Contamination	 The potential human receptors of contamination include: Construction workers, contractors and visitors on the Site during redevelopment works. Future receptors are recreational users of Gunyama Park and intrusive maintenance workers. Potential environmental receptor of impacts are: Off-site groundwater which flows towards the Alexandra Canal.

Consideration	Details
Identified Complete Future Pathways	 Direct dermal contact or ingestion of contaminants in soil: complete pathways exist for future site users due to the contamination of lead and carcinogenic PAHs exceeding the HIL if an appropriate barrier is not in place. The placement of appropriate barriers between the source and receptor will appropriately mitigate this pathway. Barrier controls include a capping layer and implementation of a long term site management plan to ensure maintenance and longevity of control measure. Physical disturbance of asbestos (plant and vehicles running over material) and dispersion of asbestos fibres via wind: friable asbestos have been detected in fill. A complete pathway may exist where impacted soils are not capped and protected by a long-term management plan or where appropriate Asbestos Management Plan is not implemented during construction works. Workers could also be exposed during construction and redevelopment if appropriate controls are not implemented. Groundwater migration to ecological receptors: there is potential for groundwater migration to ecological receptors: there is potential for groundwater to migrate off-site and to impact surrounding groundwater quality. Therefore this pathway is considered complete. It is noted that downgradient groundwater quality is already affected by similar sources of contamination and the Site would be further contributing to poor groundwater quality. Due to the distance between the Site and the nearest surface water body being over 1.2 km and the concrete lined nature of Alexandra Canal (considered a degraded ecosystem), the pathway between the Site source and the nearest surface water body is incomplete.

4.0 Validation Criteria

4.1 Soil Validation Criteria

The soil validation criteria for the Site have been considered from the following NSW EPA endorsed guidance documents:

- NSW DEC, 2017. Guidelines for the NSW Site Auditor Scheme (3rd Edition);
- National Environment Protection Council (NEPC), 1999. National Environment Protection (Assessment of Site Contamination) Measure (NEPM), as amended 2013
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report No.10 - CRC CARE Health Screening Levels for petroleum hydrocarbons in soil and groundwater. September 2011. (Friebel, E.and Nadebaum, P., 2011); and
- WA Department of Health (DoH), 2021. Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia.

Given the proposed land use for the Site, a range of criteria sourced from the guidance documents listed above are required to be applied. Soil validation criteria to be applied are based on the applicable human health and ecological investigation levels published in NEPC (2013). Specifically, validation criteria will be derived for each contaminant as relevant based on:

- Health Investigation and Screening Levels for:
 - Recreational C for the Gunyama Park public open space Table 1A(1) (NEPC, 2013)
 - Commercial/Industrial D for George Julius Avenue North Table 1A(3) (NEPC, 2013)
- Environmental Investigation Levels for the public open space (Gunyama Park) and commercial/industrial (George Julius Avenue North) - Table 1B(1) to 1B(5), NEPC (2013)
- Environmental Screening Levels for the public open space (Gunyama Park) and commercial/industrial (George Julius Avenue North) - Table 1B(6), NEPC (2013)
- Management Limits for Total Petroleum Hydrocarbons (TPH) fractions in Soil for the public open space (Gunyama Park) and George Julius Avenue North (George Julius Avenue North) – Table 1B(7) NEPC (2013); and
- The definition of asbestos contaminated soil as provided in Safe Work Australia (SWA) 2011/NSW WorkCover 2011.

4.2 Imported Materials

In accordance with current NSW EPA policy, only material that does not represent an environmental or health risk at the receiving site may be considered for resource recovery. As referenced in the Stage 1 AECOM RAP (2016), imported materials will only be accepted to the Site if they meet the definition of:

- Virgin Excavated Natural Material (VENM) as defined in the Protection of the Environment Operations Act (1997) Schedule 1; or
- Excavated Natural Material (ENM) as defined in DECC (2012); or
- any other suitable material which has been appropriately validated and meets the soil validation criteria.

All material imported to the Site will be required to be accompanied by appropriate documentation that has been verified by the appointed Validation Consultant.

4.3 Waste Classification

Materials which do not meet the soil validation criteria and/or are deemed not suitable for reuse at the Site (refer to **Section 4.1**) will be assessed for off-site disposal in accordance with the NSW EPA (2014) Waste Classification Guidelines.

5.0 Assessment of Remediation Requirements – Stage 2 Construction Works

Commercial-in-Confidence

Based on the current soil and groundwater data set (2008-2020) and in conjunction with the elements of the proposed development, it is AECOM's opinion that:

The PAH, lead and asbestos impacted fill materials in the Site do not warrant further remediation (other than capping) – the future risk of contaminated soil coming into contact with human or ecological receptors is considered low and does would not warrant remediation for the following reasons:

- The impacts would not present an unacceptable risk to future site occupants or intrusive
 maintenance workers (following completion of the proposed development works) due to HIL C
 exceedances only being observed at sample depths greater than 0.5 m bgl based on the data from
 the site investigation conducted by AECOM (2016).
- The lithology encountered at boreholes within this area generally consisted of fill from 1 2 m bgl.
- The area will be capped with a minimum of 500 mm of validated suitable clean fill ((as defined in Section 4.2) below finished site levels in areas of shallow planting and other open spaces; and a minimum of 1.5 m below finished site levels in areas of tree planting, with environmentally suitable materials placed in construction garden beds/planter boxes to the final finished site levels; and the capping material will be underlain by a marker material.
- Analytical results from groundwater well MW205 for metals, PAH, BTEX, TRH and VHCs all reported concentrations below the laboratory limit of reporting.
- The area of TRH contamination in the southernmost portion of the Site is limited in extent on-Site
 and will be below the depth of services as 3 m of fill and capping will be placed for the construction
 of George Julius Avenue North.

The 'cap and contain' strategy will prevent PAH, lead and asbestos impacted material from coming into contact with receptors. Remediation works may be required when unexpected finds are encountered.

6.0 Regulatory Framework

6.1 Council

Remedial works at the Site shall be carried out in accordance with the requirements of the *Contaminated Land Management Act* 1997, the State Environmental Planning Policy (Resilience and Hazards) 2021 (SEPP 2021), City of Sydney *Contaminated Land Development Control Plan* 2012 (DCP 2012) and the NSW Protection of the Environment Operations Act, 1997.

SEPP 2021 specifies when remediation work will require Development Consent from the planning authority (Category 1 remediation work). Any remediation works that do not require Development Consent are Category 2.

Commercial-in-Confidence

Based on review of Clause 9 of SEPP 2021 and the DCP 2012, the proposed remediation works are considered to be Category 2, as summarised below:

Table 6 Review of SEPP 55 Requirements

Category 1 Remediation Work	Site Evaluation
SEPP 55	
Designated Development	No
Land declared to be critical habitat	No
Likely to have significant effect on a critical habitat or a threatened species, population or ecological community	No
Development for which another State environmental policy or regional environmental plan requires development consent	No
Carried out or to be carried out in an area or zone to which any classifications to the following effect apply under an environmental planning instrument:	
Coastal protection	No
Conservation or heritage conservation	No
Habitat area, habitat protection area, habitat or wildlife corridor	No
Environment protection	No
Escarpment, escarpment protection or escarpment preservation	No
Floodway	No
Littoral rainforest	No
Nature reserve	No
Scenic area, or scenic protection	No
Wetland	No
Carried out or to be carried out on any land in a manner that does not comply with a policy made under the contaminated land planning guidelines by the council for any local government area in which the land is situated	No
DCP 2012 (where different to above)	
Remediation works involving on-Site treatment of groundwater	No
Remediation works involving on-Site treatment of contaminated soil	No
Remediation work that does not comply with the management provisions of Section 5 of the DCP 2004	No ¹

Notes:

- Council requires 30 days notice prior to the commencement of Category 2 remediation works;
- Council requires a copy of ESA report(s) and the RAP at least 14 days prior to the commencement of Category 2 remediation works;
- Contact details for the Principal Contractor and/or party responsible for ensuring compliance of remediation work with all relevant regulatory requirements; and
- After completion of the remediation program, Council must be notified within 30 days.

AECOM assumes that the above notification(s) will be provided by the Remediation Contractor.

¹ Review of DCP 2012, indicates that:

23

6.2 **CLM Act (1997)**

The CLM Act (1997) is the primary Act under which contaminated land is regulated by the NSW EPA. Relevant legislation relating to the CLM Act (1997) includes the Contaminated Land Management Regulation (2008), which commenced on 1 September 2008.

This section addresses the following aspects of the Act:

- Determination and suitability of a contaminated site for a proposed use including the generation of remediation criteria:
- Existing orders and regulatory instruments applicable to the Site; and
- Voluntary remediation proposals and agreements.

The Guidelines for the NSW Site Auditor's Scheme (The Auditor Guidelines) (DEC, 2017) were prepared by the Department of Environment and Conservation (DEC, now known as the NSW EPA) under the CLM Act (1997). The Auditor Guidelines (DEC, 2017) describe a decision process for assessing urban redevelopment sites that should be followed by contaminated land consultants. The Auditor Guidelines (DEC, 2017) prescribe soil investigation levels (SILs), which are the concentrations of particular contaminants above which further investigation and evaluation (such as through completion of a quantitative risk assessment) are required.

The CLM Act (1997) sets out requirements for site audits. It is understood that a Site Audit Statement will be prepared by a NSW EPA Accredited Site Auditor for the Site. The SAS will confirm whether the Site has been remediated to a standard suitable for the proposed development land uses.

6.3 WorkCover

6.3.1 Asbestos

As discussed in **Section 3.2.1**, asbestos in soil is expected to be encountered in the fill randomly across the Site. WorkCover requires at least 7 days notification prior to any excavation works associated with bonded and friable asbestos.

6.3.2 **Underground Storage Tanks**

If any USTs are encountered during the excavation works, based on review of the DECC (2009) Guidelines for the Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008, removal of the UST should be undertaken in accordance with:

- Australian Standard AS4976-2008, The Removal and Disposal of Underground Petroleum Storage Tanks; and
- Australian Standard AS1940-2004, The Storage and Handling of Flammable and Combustible Liquids.

WorkCover must be notified of any UST removal works within 7 days using the prescribed approval form.

7.0 Remediation

7.1 Objective

As discussed in **Section 1.2**, the remediation objective is to manage the excavation and fill/soil disposal reuse works so that the Site is suitable for development of the future Gunyama Park and George Julius Avenue (recreational open space and commercial/industrial). Where possible, all excavated material will be retained onsite as part of the development works. The Site works will consist of asphalt being removed from the Site and the underlying fill material being capped with a layer of clean material. Furthermore, it is expected that existing height levels will change in this area. All geotechnically suitable materials excavated that are demonstrated to be aesthetically appropriate and chemically stable/immobile where contaminants have been identified above the validation criteria will be reused below the capping layer where possible.

7.2 Preferred Remediation Strategy

The overarching remedial strategy for the Site will be the implementation of a capping layer of clean material (as defined in Section 4.2) over the contaminated fill present in the area.

A long term Environmental Management Plan (EMP) will be developed to manage residual fill contamination (including PAHs, lead, TRH and asbestos) and the integrity and longevity of the capping layer at the Site (refer to **Section 9.5**).

The preferred strategy to achieve the remediation objectives is as follows:

- Site establishment and preparatory works;
- The existing concrete slabs will be retained where possible. Where sections of the slab are removed, a suitably qualified Validation Consultant will inspect the removed slabs for asbestos and the underlying soils to assess for potentially contaminated soils (based on visual and olfactory observations and field screening of soil samples using a photoionisation detector [PID]);
- Excavation and separation of any other potentially contaminated fill materials (based on visual and
 olfactory observations) considered to be Unexpected Find Material for separate stockpiling and
 validation testing to confirm if it is suitable for reuse within Gunyama Park Stage 2 and George
 Julius Avenue North works or will require offsite disposal (refer to Section 9.2.2);
- Importation of suitable/validated imported fill to the Site to achieve the Gunyama Park, related open space final levels and George Julius Avenue North (if required) and as required for the capping material (refer to **Section 7.3.3**);
- Once the required levels (minus the capping layer) have been achieved in the Gunyama Park, related open space areas and George Julius Avenue North, a survey of the top of fill levels will be undertaken during a detailed survey and site inspection will be conducted to confirm that the marker material meets the requirements of Section 7.3.2; and
- A final survey of the final finished level will be conducted to confirm that the marker and capping requirements in the Gunyama Park area and George Julius Avenue North (as detailed in Section 7.3.2 and 7.3.3) are achieved.

The above approach is considered to be appropriate as there will be no complete exposure pathway to the underlying fill materials for future occupants of the Gunyama Park open space area and George Julius Avenue North due to the proposed capping works.

7.3 Remediation Methodology

7.3.1 Management of Unexpected Finds

Excavated material which is deemed to be Unexpected Finds Material will be stockpiled separately and sampled in accordance with the requirements of **Section 9.2**. Based on the results of these validation works, the material will be either reused within the Gunyama Park below the capping material (refer to **Section 7.3.2** and **7.3.3** below) or tested for offsite disposal (refer to **Section 8.7**).

The following unexpected events have been identified as having the potential to occur during the excavation works:

- Variation of contaminant characteristics or identification of unanticipated contaminants and materials. This may include the following materials:
 - Soil that appears to be contaminated based on visual and olfactory (odour) observations;
 - Soil that contains significant VOC concentrations (i.e. greater than 50 ppm as measured during the field screening of bagged soils samples using a PID);
 - Groundwater that appears to be contaminated based on visual and olfactory (odour) observations (including potential hydrocarbon sheens on the water surface);
 - Drums or underground storage tanks with unknown contents (i.e. either contained or potentially leaked into the surrounding soils).

In the event that additional trade waste lines or other in-ground features are identified and are considered to represent potential contamination sources (e.g. tanks, drums, unusual wastes etc), the following protocol will be adopted:

- All excavation works will cease, the Validation Consultant will be contacted and the area of concern will be appropriately barricaded;
- If required, appropriate sampling and analysis will be undertaken by the Validation Consultant;
- The requirement for any additional remediation works will be assessed by the Validation Consultant and undertaken following liaison with the Site Auditor; and
- The above works will be documented in the Validation Report.

Occupational Health & Safety (OH&S) and environmental protection requirements may need to be reviewed, depending on the type of unexpected finds encountered.

7.3.2 Marker Material Installation

As discussed in Section 7.2 the proposed Gunyama Park will be capped as follows:

• The capping material will be underlain by a marker material. Consistent with the Green Square Town Centre project, the marker material shall consist of a bright coloured HDPE geotextile fabric constructed to a density greater than 300 grams per square metre (or equivalent).

Disturbance of the underlying fill material in the above open space areas will be managed as per the requirements of the Long-term EMP.

Regular inspections will be undertaken by the Validation Consultant to verify the appropriate installation of the marker material beneath the proposed Gunyama Park at the appropriate depth below the Final Finished Levels including the minimum 500 mm of crushed rock and/or validated suitable imported fill (as defined in **Section 9.2.3**, as appropriate). Photographic records will be maintained from the inspection(s) for inclusion in the Validation Report in addition to provision by the Principal Contractor of a survey showing the level(s) and lateral extent of the marker material.

7.3.3 Capping Material Installation

Inspection will be undertaken to verify the installation of the capping profile during placement of the suitable imported fill (as defined in **Section 9.2.3**) over the marker material. The following capping works will be undertaken:

- Gunyama Park beneath other open space areas a minimum of 500 mm of validated suitable clean fill (as defined in **Section 4.2**). The capping material will be underlain by a marker material;
- Gunyama Park shallow landscaping and mass planting minimum 500 mm capping depth;
- George Julius Avenue North minimum 550 mm capping depth;
- Underground service corridors minimum 850 mm capping depth. The services will be placed within imported fill and above the marker layer. If services are installed at greater depths, the depth of the imported fill and marker layer will be extended appropriately; and
- Planted tree areas minimum 1.5 m depth capping depth.

The above capping material requirements are broadly in line with that being undertaken within the Green Square Town Centre infrastructure corridors. The typical cross-sections of the capping and marker layers are shown in **Appendix D**. The extent of the capping layer to be installed as part of the Stage 2 works is shown on **Figure 6** in **Appendix A**.

Capping would not be required in areas of the Site where the material is natural and uncontaminated or if there is a minimum of 2 m of validated clean material (as defined in **Section 4.2**).

In capping areas directly adjacent to the Site boundary, such works will be completed with use of a retention wall. The thickness of the capping material may be increased locally to provide suitable batter slopes for certain areas.

Photographic records will be retained from the inspection(s) for inclusion in the Validation Report in addition to provision by the Principal Contractor of a survey showing the final finished level(s) and lateral extent of the capping. The Validation Consultant will inspect the imported fill as it is brought to the Site.

8.0 Construction Management Procedures

This section identifies the broad environmental construction management measures that will be required to be implemented, specifically in relation to contamination on the Site, during the proposed development works. These measures are proposed to be incorporated into a Remediation Environmental Management Plan (REMP) to be prepared by the Principal Contractor (refer to **Section 8.1**).

8.1 Construction Environmental Documents

During construction the following Management Plans and Work Procedures will be prepared for the proposed development works at the Site:

Table 7 Construction Environmental Documentation

Project Plan	To be prepared by	To be approved by:
Remedial Action Plan (RAP) (this document)	AECOM	CoS/Site Auditor
Construction Environmental Management Plan	AECOM	CoS
Occupational Health and Safety Plan (OHSP)	Principal Contractor	CoS
Remediation Environmental Management Plan (REMP) including: Remediation schedule, Hours of operation Names and phone number for contact personnel Traffic and Pedestrian Management Plan; Noise and Vibration Management Plan; Waste Management Plan; Stormwater and Erosion Management Plan; Air Management Plan; and Flora and Fauna Assessment	Principal Contractor	CoS
Asbestos Management Plan	Principal Contractor	CoS/Site Auditor
Acid Sulfate Soils Management Plan (ASSMP)	Principal Contractor	CoS/Site Auditor
Material Tracking Plan	Principal Contractor	CoS/Site Auditor
Quality Management Plan	Principal Contractor	CoS
Validation Report	Principal Contractor's Validation Consultant	CoS/Site Auditor
Long Term EMP	Principal Contractor's Validation Consultant	CoS/Site Auditor

8.2 Material Tracking Plan

All materials handled during the construction works will be tracked in accordance with the Material Tracking Plan (MTP) in order to allow verification of the correct movement and handling. The system will track materials from cradle-to-grave, and will provide detailed information on the location and quantity of all material movements both on and off-Site, so that the material being handled can be identified and accounted for. The tracking system shall include accurate tracking of stockpiles throughout the entire material handling stage and will included confirmation of stockpile locations and volumes. This is to reduce the risk of cross-contamination between stockpiles/spoil movement.

As part of this process, accurate records shall be kept to ensure that backfilling of excavations (where required) and potential reuse of material only occurs following the appropriate testing of the subject materials. Plans will be made with respect to the extent of each excavation. A register of all analytical results for stockpiles and excavations will be maintained throughout the soil testing works.

Standard forms shall be prepared as part of the MTP. The forms and their function shall include, but not be limited to:

- Off-Site Transport/Disposal Form: providing a record of materials removed from the Site and
 including the material type, quantity, origin, shipping destination, time/date removed from the Site,
 time/date placed at the offsite location and an approval by the nominated environmental consultant
 that the material meets the disposal requirements;
- Imported Fill Form: providing a record of materials imported to the Site including the date, material type, quantity, point of origin, intended use and the suitability of the material for use as backfill at the Site:
- Material Excavation Form: providing a record of excavated materials for each piling area or excavation on the Site including the date, material type, excavated quantity, origin and intended destination;
- Material Stockpiling Form: provides a record of all materials placed in stockpiles. The form will
 include the date, material type, stockpiled quantity, origin and intended end use; and
- Material Placement Form: this form provides a record of any materials backfilled on the Site and includes the date, material type, quantity backfilled and origin.

Each form shall be completed on a daily basis by the Remediation Contractor's representative and collated into a cumulative log (tracking register) for each process on a weekly basis. The template for the tracking register will be included in the MTP. Roles and responsibilities for materials tracking will be specified in the MTP.

8.3 Erosion and Sedimentation Control

This section outlines the broad environmental construction management measures that will be required for erosion and sediment control during the proposed works. Further detail will be provided in the *REMP* to be prepared by the Remediation Contractor.

To prevent erosion of surfaces and sedimentation of surface water during the construction works, appropriate measures should be implemented to manage:

- Excavations;
- Material stockpiling;
- Surface water flows; and
- Dust and odour generation.

These four aspects are addressed in the following sections, and supplement the *REMP* to be prepared for the construction works.

8.3.1 Management of Excavations

To minimise the amount of erosion and sedimentation during the proposed excavation works, as far as practicable, works should minimise the area of exposed, unsealed surfaces or extent of trenches at any one time, through sequencing of works and progressive excavation and restoration. Surface waters will need to be appropriately controlled during the excavation works.

When excavations are planned, diversion channels/drains should be constructed to divert clean water away from future open excavation areas (e.g. piling locations), exposed surfaces (e.g. stockpile areas) and areas of disturbed soils (e.g. unsealed roadways). Similarly, erosion and sediment control measures should be installed around and downslope of planned excavation areas and around stormwater drains, pits and outflows prior to the start of excavation to prevent silt laden water from migrating off-site.

To anticipate and plan for potential erosion and sedimentation incidents, erosive works should be deferred or re-scheduled after periods of heavy rainfall and during high wind periods.

Restoration of previously exposed surfaces, excavations and stockpiles may involve permanent solutions including asphalting/concreting or revegetating the area, or temporary measures such as seeding and/or covering. Restoration of a disturbed area is to be undertaken as soon as practicable. Trenches and excavations are to be covered as soon as feasibly possible through backfilling and sealing, to reduce the potential exposure of stormwater to sediment and/or contaminants.

8.3.2 Stockpiling of Materials

8.3.2.1 Stockpile Locations

Materials generated by the piling or excavation works will be stockpiled within a designated stockpile area. If the excavated material is considered to be significantly different to that encountered during the previous site investigations (i.e. Unexpected Finds Material), the stockpiled soil will then be tested for either potential reuse on the Site or to classify the material prior to being transported directly offsite to a licensed landfill facility. The soil testing works related to these works are detailed in **Section 9.2.2**. The volume of stockpiles formed from the discussed piling and excavation works will be confirmed as part of the MTP.

8.3.2.2 Stockpile Area Preparation

In the event that contaminated spoil material is temporarily stored on-site prior to being transported offsite, the following management measures will be implemented (further detail will be provided in the *REMP* to be prepared by the Remediation Contractor):

- A designated temporary spoil stockpile containment area is to be established on the Site on a concrete/asphalt surface or other relatively impervious layer such as or HDPE plastic where no hardstand is available;
- Stockpiles of excavated fill material or contaminated natural soils should be covered with plastic covers/tarps to mitigate risks associated with wind and water erosion;
- In addition to the sediment source controls, sediment filters (e.g. geotextile 'sausages', gravel / sandbags or similar) are to be installed around the Site's active stockpiling areas. Sediment filters are to be installed at on-site stormwater inlets, grates and entry points of preferential drainage lines (if any) to reduce potential sedimentation;
- Signs will be erected at the entrance to the stockpile area and at locations around the stockpile specifying individual stockpile numbers and the type of materials stored; and
- Buffer zones will be established around each stockpile area to enable access to the stockpiles and
 minimise impacts of the stockpile area on the surrounding facilities. The location of the truck
 access to the stockpiles and stockpile area is not to impede the function of the diversion drains,
 bunding and erosion and sedimentation control measures outlined previously.
- Where stockpiles are placed on an unsealed ground surface (no plastic liner or pavement), validation sampling of the stockpile footprint will be undertaken as described in **Section 9.2.4**.
- Where stockpiles of imported validated material are placed on a unsealed (no plastic liner or hardstand) and unvalidated ground surface (on fill or potentially contaminated soil), the bottom, 0.1 m of the stockpile is to be treated and handled as potentially contaminated soil or fill and not used as fill above the marker layer. A visual inspection of the minimum 0.1 m base of stockpile will be inspected by the Validation Consultant to visually confirm that the stockpiled material handled hasn't mixed with underlaying contaminated soils.

8.3.2.3 Stockpile Construction and Maintenance

The drainage, sediment and erosion control measures installed within stockpiling areas at the commencement of the construction works will be maintained, repaired and replaced where necessary for the duration of the stockpiling activities (in accordance with the REMP).

Stockpiles of excavated material are to be kept onsite for the shortest time period possible. All stockpiles are to be maintained in a tidy and safe condition with stable batter slopes (if required). Stockpiles of excavated Site fill/soils are to be kept in a separate area to any stockpiles of imported materials.

As discussed, while it is considered unlikely that stockpiles would be held onsite for the longer term, if required, such stockpiles should be covered with high density polyethylene (HDPE) plastic or stabilised with spray grass seeding to reduce dust generation and erosion.

Measures will be taken to reduce the generation of dust from stockpiles through the use of wetting and covers (refer to **Section 8.8**). Run-off will be managed by the use of surface bunding, silt fences and drainage diversions collected and prevented from moving onto other areas of the Site, off-site and/or into stormwater drains or waterways.

8.4 Water Management

Works are not to pollute waters, in accordance with the requirements of section 120 of the *Protection of Environment Operations Act (POEO Act*, 1997).

8.4.1 Surface Water Management

During construction works, stormwater entering the Site is to be minimised wherever possible by directing surface stormwater away from the Site. This can be accomplished using bunds, diversion drains and stormwater control measures constructed to divert clean water away and in particular around exposed areas, disturbed soils (e.g. piling works) and stockpiling areas.

Sediment control devices are to be installed around all stormwater drains, gutters and pits, and in depressions downstream of the Site, prior to the start of works, to prevent sediment-laden water from entering the stormwater system. Stormwater inlet / grate openings within the vicinity of works that have the potential to receive contaminated waters are to be blocked through the use of barriers surrounding the inlet.

Areas where on-site stormwater could come into contact with spoil / waste material, contaminated material, excavated areas (trench locations, prior to backfilling), open stockpiles, this stormwater is to be contained through the use of bunds (or similar), to allow stormwater collection, categorisation, appropriate water quality treatment and reuse, or, off-site disposal. No untreated sediment-laden surface water collected in these areas is to enter the stormwater system or is to be sprayed on other areas of the Site/vegetation without prior testing and treatment (if required).

If a wheel wash is installed, dirty water is to be pumped out and treated (e.g. with flocculent in a sealed skip bin) and reused onsite (if suitable) or disposed offsite at a licensed facility.

Before any on-site collected water is discharged to stormwater drains, sewers or other outlets, approval, permits and/or licences from relevant authorities will need to be secured. Water that fails to meet the criteria of the applicable permits and/or licences is to be pumped into waste storage containers for off-site disposal. The approximate amounts of stormwater either released or containerised for off-site disposal will be recorded, along with the results of laboratory testing, on a Stormwater Monitoring and Disposal Record Form. These disposal documents are to be retained by the Principal Contractor and reported, as required, with monthly waste generation reports prepared in accordance with the requirements of the *REMP*.

In addition, any chemical and fuel spills that occur will be cleaned up to prevent contamination of run-off (a more detailed description of spill management will be detailed in the *REMP*).

Stormwater control devices are to be inspected daily. Inspections of control devices during rain / storm events is to be undertaken at a higher frequency (to be determined based on the magnitude of the event), and on completion of the storm event to monitor the effectiveness of mitigation techniques. If warranted, the inspections should involve cleaning and/or replacement of devices if deemed that they are compromised.

8.5 Management of Asbestos Containing Materials

Based on the results of the site investigations and validation works conducted within the Stage 1 development area, ACM will be encountered in the Site's fill material. As such, an Asbestos Management Plan will be prepared prior to commencement of the construction works and will be implemented during the excavation works.

Identified ACM which requires removal under an Asbestos Management Plan will be collected and disposed of by a licensed Asbestos Removal Contractor (ARC) in accordance with the requirements of the following:

Commercial-in-Confidence

- NSW Work Health and Safety Act (2011);
- NSW Work Health and Safety Regulation (2017);
- Code of Practice: How to Safely Remove Asbestos, Safe Work Australia (2019); and
- Code of Practice: How to manage and control asbestos in the workplace, Safe Work Australia (2019).

The ACM removal works, where required by the Asbestos Management Plan, would be undertaken as follows:

- The Principal Contractor would establish appropriate barriers and signage around the area where ACM has been identified;
- The ACM will be suitably removed from the Site by an Asbestos Removal Contractor (ARC);
- Airborne asbestos fibre monitoring will be undertaken around the working area during the works to confirm that the ACM is being removed in an appropriately controlled manner (refer to Section 8.9):
- Validation soil samples will be collected at 10 m lineal intervals along the walls and base of any
 identified ACM impacted excavation areas and analysed for asbestos. Should the soils beneath the
 ACM be impacted with asbestos fibres, the impacted soils will be excavated for appropriate off-site
 disposal; and
- An ARC will conduct a visual inspection of the affected area to confirm that it is free of all visible ACM fragments. A clearance certificate will be prepared to document these works.

If ACM is encountered and removed during the excavation works, for the purposes of appropriately protecting the construction worker, residual soils must not contain asbestos (bonded or otherwise) as determined by the following:

- A visual inspection of the remediated area to confirm the removal of all visible ACM fragments; and
- No detection of asbestos in samples collected from the residual soils and submitted for analysis.

The additional works (including over-excavation if required) for management of ACM identified in residual soils for the protection of construction workers will be determined by the Asbestos Management Plan.

Asbestos air monitoring to be conducted during the remediation works is discussed in Section 8.9.

8.6 Classification for On-Site Reuse

As discussed in **Section 8.3.2.1**, stockpiled Unexpected Finds Material from the excavation works will be assessed for its suitability for reuse on-site, where required, by collection of representative samples and chemical analysis for the relevant CoPC (refer to **Section 3.2.1**). The analytical results will be assessed against the soil validation criteria as detailed in **Section 3.3**.

8.7 Waste Classification for Off-Site Disposal

Materials deemed not suitable for reuse at the Site or which require excavation to accommodate the redevelopment works will be assessed for off-site disposal in accordance with the NSW EPA (2014) Waste Classification Guidelines - Part 1: Classifying Waste.

Stockpile sampling would be undertaken at a frequency of one sample analysed per 100 m3 on the basis that the sampled materials are inspected by a qualified environmental scientist and are observed to be relatively homogenous. If the material is considered to be heterogeneous comprising different fill types, then a greater sampling density will be required.

Waste classification samples will be analysed for the following suite of analytes:

- Heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, mercury and zinc);
- TPH and BTEX:
- PAHs;
- Asbestos; and
- TCLP testing for heavy metals and PAHs, as required based on the primary results.

Based on the analytical data presented in **Section 2.9** and **0**, it is considered unlikely that onsite treatment works will be required as part of the offsite disposal works (i.e. the materials are likely to be classified as either General or Restricted Solid Waste which do not require treatment/stabilisation).

8.7.1 Off-Site Transportation of Materials

Classified waste is to be taken to an appropriate waste disposal facility licensed to receive such waste. Approval may need to be obtained from the respective landfill facility prior to transport. An application for such an approval would require an assessment of the DECCW Guidelines and an estimate of the likely volume of waste to be disposed.

The following material handling requirements will be implemented for trucks transporting materials off-Site:

- A licensed transporter is to be used to transport material to an appropriately licensed NSW EPA waste facility;
- All truck loads are to be filled to the correct level, no over-filling;
- Trucks carrying waste materials will be covered prior to exiting the Site and will remain covered until authorised to unload at the destination (NSW EPA licensed waste facility);
- Trucks will be fitted with seals to ensure that the movement of potentially saturated materials is undertaken appropriately. The integrity of the seals will be inspected and tested prior to commencement of each day's haulage works;
- Excess dust or load material is to be removed from vehicles prior to departure from Site, and as such may require the use of an onsite wheel wash or spray wash or similar. In the event that materials are tracked offsite, it is to be immediately cleaned up in a way that prevents contamination of land, the stormwater or waterways;
- Trucks will not wait in the streets surrounding the Site or within the Site area; and
- Trucks will exit the Site through predetermined exit points and will follow a predetermined transport route to the destination (landfill) via an approved route in accordance with the Principal Contractor Traffic Management Plan (yet to be prepared).

8.8 Air Quality Management

This section outlines a number of measures that are to be implemented on Site to reduce potential dust and odour issues that may be associated with the works, from a contamination perspective. These measures are to be adopted in accordance an Air Management Plan and Stormwater and Erosion Management Plan to be prepared as part of the REMP (refer to **Section 7.3.3**).

8.8.1 Odours

Based on the findings of the previous investigations, it is considered unlikely that significantly odorous materials would be generated during the construction works. If odorous materials are encountered, the following environmental control measures listed below are implemented.

An odour management system will be developed as part of the REMP to incorporate the use of various management options as deemed appropriate.

If required, the management of odours during the excavation and stockpiling works will include the following options:

- Investigation as to the source of odours including odour monitoring;
- Minimisation of the quantity or surface area of exposed odorous materials;
- Implementation of odour management response procedures (required to be specified in the REMP);
- Implementation of progressive contingency measures (required to be specified in the REMP);
- Covering of exposed odorous materials progressively or at the completion of each work period;
- Minimising exposed/excavation areas;
- Apply odour suppressant sprays or foams to excavation surfaces; and
- Undertake activities during favourable weather conditions.

Selection of the appropriate management and mitigation measures, including those summarised above, will be based on consideration of:

- The quantity of odorous materials that require remediation;
- The duration of the required remediation works and associated management of odorous materials;
- The proximity of the proposed remediation works to sensitive receptors;
- The prevailing and forecast weather conditions; and/or
- Other activities being undertaken at the Site in parallel with the remediation work.

8.8.2 Dust

To prevent unacceptable levels of dust being generated during the construction works, a number of appropriate measures should be implemented. These measures may include the following:

- Use of a water cart or water sprays to suppress dust in open areas and along unsealed internal roadways;
- Watering and installation of temporary sheeting to cover localised exposed areas and stockpiles;
- Hosing down spoil as it is excavated during excavation activities;
- Covering stockpiles of potential contaminated soil which will remain on the Site for more than 48 hours
- Alteration of the works program to minimise the extent of disturbed open areas;
- Consolidation of material stockpiles, where appropriate;
- Use of chemical dust-suppressants provided the chemicals do not pose a contamination or OHS hazard;
- Use of alternative coverings such as hydromulch to stabilise the surface of open disturbed areas and long-term stockpiles;
- Use of additional dust suppression features on items of dust generating plant and equipment;
- Installation and use of a wheel wash at the Site exit to remove material from Site vehicles;
- · Securely covering all loads entering or exiting the Site; and
- Use of alternate work practices such as modified equipment to minimise dust generation.

8.9 Asbestos Air Monitoring

ACM in the form of bonded and friable asbestos is expected to be encountered randomly within the fill at the Site. Consequently, asbestos fibre air monitoring must be carried out during times when excavation of fill materials is conducted in accordance with the *Guidance Note on The Membrane Filter Method For Estimating Airborne Asbestos Fibres 2nd Edition* [NOHSC:3003(2005)].

The air monitoring must be carried out by a Licenced Asbestos Assessor to NATA Standards and in accordance with the Safework Australia *Code of Practice How to Remove Asbestos Safely*. If friable asbestos is discovered during the works, an independent licensed asbestos assessor will be required [independent of the Principal Contractor/Licenced Class A (friable) or Class B (non-friable) asbestos removalist].

The asbestos assessor will select the number and location of asbestos monitoring locations based on the daily site works and conditions. Typically the monitoring locations will be around the active excavation area (fill material), stockpile areas and site sheds/amenities on each day of remediation work.

Air monitoring samples are only to be analysed at a NATA accredited laboratory accredited to ISO17025 for asbestos counting.

The airborne asbestos monitoring results will be communicated to the site workers daily during prestart/toolbox meetings at the commencement of the next work shift and a copy posted in the site office.

The following asbestos fibre control limits and actions applicable to the work will include:

Table 8 Asbestos Air Monitoring Action Levels

Level	Control Limit	Action	
Acceptable limit	<0.01 fibre/mL	Equal to background and detectable limits. Level to achieve for air clearances.	
Alert level	>0.01 fibres/mL	Review control measures, investigate the cause and implement controls to eliminate or minimise exposure.	
Action level	>0.02 fibres/mL	Review control measures investigate the cause and implement controls to eliminate or minimise exposure. The licensed asbestos removalist (Remediation Contractor) must notify the regulator (WorkCover NSW) by phone followed by email, fax or written statement that work has ceased and the results of the air monitoring. Work may only recommence following receipt of air clearance monitoring results of <0.01 fibres/mL).	

The air monitoring will continue until the final excavation surface has been inspected as clear of visible asbestos. Following the receipt of the final air clearance monitoring results of <0.01 fibres/mL, the asbestos work exclusion area may be entered without the need for asbestos exposure prevention PPE.

8.10 Noise and Vibration Management

The following measures are recommended to minimise potential noise and vibration impacts from excavation and compaction works on the Site, and are to be applied in conjunction with any conditions of development approval gained for the works:

- Unless contrary to the conditions of development approval, all reasonable and feasible measures
 are to be used to meet the construction noise management levels outlined in The City of Sydney
 Code of Practise for Construction Hours/Noise within the Central Business District (1992) and the
 NSW EPA Industrial Noise Policy (1999);
- Efficient silencers and low noise mufflers should be used on all plant and machinery where possible;
- Regularly maintain plant and machinery to minimise noise emissions;
- Face exhausts of plant and machinery away from receivers, where possible;

- Vibration monitoring may need to be undertaken during vibration generating activities (e.g. jackhammering, ground compaction) to determine compliance with NSW EPA guidelines at the nearest receivers; and
- The potential cumulative impacts of the proposed works in conjunction with other planned construction works in the area (i.e. on the Green Square Town Centre site) should be considered and appropriate mitigation measures adopted if required.

8.11 Site Access

The primary access route to the Site will be in accordance with the Review of Environmental Factors (REF) and approved Construction Site Management Plan. The main gate will control access to and around the Site during the development works.

Entry to any designated excavation works areas will be controlled through the use of a sign-on/sign-off log system at the main gate. Only authorised personnel will be allowed into the excavation works area.

Personnel will gain access to excavation areas only after they have:

- Attended and completed a Site safety induction briefing (applicable to all Site workers and visitors);
- Are wearing all applicable personal protective equipment (PPE) as detailed in the OHSP; and
- Been inducted into the OHSP.

All construction vehicles and delivery vehicles will enter the Site through the nominated entry point.

8.12 Work Health and Safety Signage

Work Health and Safety (WHS) signage will be installed at the Site entrance detailing the location of the Site offices, construction/excavation works, first aid facilities and parking. Traffic restrictions will be installed to limit access further into the Site and ensure the safety of Site visitors.

Signage at the main gate will include after-hours contact details. Additional signage will be erected along Exclusion Zone boundaries to restrict access to these areas to authorised personnel only.

8.13 Hours of Operation

Hours of operation must be in accordance with the REF and the City of Sydney Code of Practice for Construction Hours/Noise 1992.

9.0 Validation Plan

This section provides a description of the validation methodology to be adopted by the Validation Consultant during the remediation works.

The information presented herein is of a summary nature only. If required, specific details could be documented in a *Sampling, Analysis and Quality Plan* (SAQP).

9.1 Project Team

The Project Team must include a suitably qualified Validation Consultant with experience working on contaminated sites and trained in the requirements of this RAP. Decisions related to validation will be made in accordance with relevant guidelines endorsed by the NSW EPA.

9.2 Soil Validation Plan

9.2.1 Unexpected Finds Material

The validation of Unexpected Finds Material will be conducted to assess whether it can be reused onsite as follows:

- All Unexpected Finds Material proposed to be reused as fill materials below the capping layer and down to a depth of 2 m below the Final Finished Level in the Gunyama Park area shall be sampled at a frequency of one sample per 70 m³ (consistent with the Green Square Town Centre project);
- Samples shall be analysed for the CoPC listed in Section 3.2.1(i.e. lead, TPH, BTEX, PAHs and
 asbestos) in combination with consideration of the source location and material inspection. A
 detailed and systematic inspection will be completed of the material to assess the potential
 presence of visible ACM prior to final placement. This will comprise supervision of excavation of
 the Unexpected Finds Material and inspection during stockpiling of the material. The material will
 be visually assessed and field screened using a photoionisation detector;
- The validation samples will also be tested to assess the leachability of lead and benzo(a)pyrene concentrations under a neutral leaching conditions (using the ASLP). This testing will confirm that potentially lead and benzo(a)pyrene impacted materials are suitability immobile. The lead and benzo(a)pyrene ASLP results in the materials is required to be less than the adopted ANZG (2018) trigger values for marine aquatic ecosystems to enable onsite reuse; and
- Fill materials shall be inspected for consistency by the Validation Consultant. Material which is
 found to be aesthetically dissimilar to the fill materials exposed in general at the Site shall be
 assessed as per the protocols for unexpected finds. Malodorous materials shall be analysed for
 TPH and VOCs (in addition to the CoPCs discussed above).
- Should fill or soils with indicators typical of acid sulfate soils (black colouration and rotten egg odour) and more than 1 tonne of the material require excavation from the Site in total, the procedures in the ASSMP will be implemented.

The following rules will apply to the soil testing data when assessing against the soil validation criteria (refer to **Section 4.0**) by statistical analysis:

- No single analyte concentration shall exceed 250% of the soil validation criteria for each CoPC;
 and
- The standard deviation of the results must be less than 50% of the allowable maximum specified for each CoPC.

If the above validation testing of the Unexpected Finds Material indicates that the material is suitable for reuse beneath the Gunyama Park capping layer, the material will also be inspected as it is placed in this area to ensure it is similar to the materials that were tested and analysed during the above validation sampling.

9.2.2 Underground Storage Tanks

If any USTs and related infrastructure are encountered during the excavation works, soil characterisation / validation sampling of the resulting excavation will be completed in accordance with NSW EPA (2014) *Technical Note: Investigation of Service Station Sites*, as follows:

9.2.2.1 Validation of Excavations

The validation of UST excavations will be undertaken as follows:

- Tank Pit Excavation Walls: a minimum of two samples will be collected and analysed per tank, with a sample taken from each tank wall. Samples will be selected for analysis based on results of both field observations and field screening results (refer Section 9.2.2.3). Samples will also be distributed across soil types (i.e. multiple wall samples may be collected and analysed);
- Tank Pit Excavation Floor: at least one sample will be collected and analysed from beneath each removed UST and / or every 10 m² thereafter;
- Fuel Dispensing Pumps Base: one sample will be collected and analysed beneath each dispensing pump backfill and one per natural soil (if considered required);
- Fuel Feed Lines to Dispensing Pumps one sample will be collected and analysed per 5 m of trenching from excavated fuel lines; and
- Remote Fill Points one sample will be collected and analysed per fill point.

Samples will be collected by the following method:

- Directly from the bulk samples within excavator bucket using a trowel and gloved hand; and
- Hand auger safely in accessible areas.

9.2.2.2 Stockpile Characterisation Sampling

Soil removed during UST excavation works will be sampled at a minimum rate of one sample per 25 m³, or one sample per stockpile for stockpiles smaller than 25 m³. Samples will be collected directly from the stockpiles using a trowel and gloved hand.

9.2.2.3 Field Screening

Each soil sample will be split in the field to provide a sub sample for screening for Volatile Organic Compound (VOCs) using a Photo-Ionisation Detector (PID). The result of the PID screening will be used to help identify which samples to send for laboratory assessment, along with other field observations. Field screening of soil samples by organic vapour analysers will follow the headspace method to minimise the loss of volatiles (as per Section 7.4.3 in Schedule B2 of the NEPM (2013 as amended).

The PID will be supplier calibrated prior to delivery and additionally calibrated using fresh air and gas standard (isobutylene or similar) in the field at the beginning of each sampling day. Calibrations certificates from the supplier and daily field calibrations will be maintained on the project file.

9.2.3 Imported Fill

Any material imported to the Site will be required to meet the environmental and geotechnical requirements specified for the particular end use.

It is expected that materials imported to the Site for the capping works or for use as growing media will meet the validation criteria detailed in **Section 4.0**.

The frequency of soil sampling will be dependent on the source of the fill material. If the material is brought onto the Site from a quarry, and the material is homogeneous, soil testing will consist of:

- a certificate warranting that the material is VENM or demonstrating the physical and chemical quality of the fill, including supporting test data; and
- visual confirmation that the material is free from contamination as it is imported to the Site.

If the imported material (including landscaping materials such as mulch) cannot be certified as VENM or clean quarry material by the supplier, the following works will be undertaken by the Validation Consultant:

- Site inspection of the source site and the reporting of these findings in the relevant reports; and
- One sample per 70m³ will be collected and analysed or a minimum of 10 samples per source (consistent with the Green Square Town Centre project). This sampling density may be decreased depending on the quantity of material to be imported from a given source and the initial laboratory analytical results. Any change in sampling density will be determined in consultation with the NSW EPA Accredited Site Auditor; and
- Visual confirmation that the material is free from contamination as it is imported to the Site.

Samples will be collected and analysed from the source location and the suitability of the material assessed by the Validation Consultant, prior to import of the material to the Site.

All soil samples will be analysed for the following suite of potential contaminants:

- Metals (As, Cd, Cr, Cu, Ni, Pb, Zn and Hg);
- PAHs and phenols;
- TPH/BTEX:
- OPPs and OCPs;
- PCBs: and
- Asbestos.

The analytical results will also be assessed to ensure they are representative of background concentrations – that is, metals concentrations are very low and organics non-detect.

The above testing regime will also be undertaken for recycled concrete, crushed rock (non-quarry), topsoil or any other imported product <u>prior to importation to the Site</u>.

9.2.4 Stockpile Footprint Validation

Where stockpiles of excavated fill or potentially contaminated soil are placed on the unsealed ground surface (no plastic liner or pavement and not on fill), validation samples are to be collected at a rate of 1 per one sample per 25 m² (on a 5 m grid). The validation samples will be analysed for CoPC and visual asbestos clearance of the surface undertaken by a licensed asbestos assessor (LAA).

9.3 Quality Assurance / Quality Control

The Validation Consultant should adopt the Data Quality Objectives (DQO) process, which have been developed based on the iterative DQO process developed by the USEPA (2000) *Guidance for the Data Quality Objectives Process - EPA QA/G-4* and adopted by NSW DEC (2006).

The guidelines incorporate field quality control and laboratory analysis, methods and information on laboratory quality control data and will be used to validate the field and analytical data for the validation works. Assessment of the achievement of the DQOs must be undertaken through reference to the Data Quality Indicators (DQIs) of completeness, comparability, representativeness, precision and accuracy.

Components of the field and laboratory programs (including quality assurance) are briefly presented in the following sections.

9.3.1 Sampling Methodology

Field procedures will be undertaken with reference to:

- National Environmental Protection (Assessment of Site Contamination) Amendment Measure (NEPC, 1999 as amended) Schedule B2, Guideline on Site Characterisation; and
- ANZECC (2000) Australian and New Zealand Environment and Conservation Council and National Health and Medical Research Council (ANZECC/NHMRC), "Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites", January 1992.

The general soil sampling strategy would be as follows:

- All soil samples will be collected into laboratory prepared and supplied glass jars with Teflon lined lids. The sampling locations will be accurately recorded (by survey wherever possible). Sample depths (where appropriate) will be recorded by tape measure. To assist surveying, labelled sample location markers (e.g. survey pegs or similar) will be used;
- Screening of the vapour headspace of soil samples for volatile organic compounds (VOCs) will be undertaken in the field using a PID. Observations for odours, staining and other unusual conditions will also be made. Sample collection will be biased towards detecting contamination;
- All samples will be collected using decontaminated equipment and a new pair of nitrile gloves;
- Samples for analysis for organic compounds will be placed on ice; and
- All samples will be forwarded to an analytical laboratory for analysis under chain-of-custody protocols.

9.3.2 Field and Laboratory QA/QC

Collection of field quality control samples will include:

- Blind duplicate soil samples (intra-laboratory) will be analysed at a rate of 1 per 20 primary samples;
- Split duplicate samples (inter-laboratory) will be analysed at a rate of 1 per 20 primary samples;
- Where required, rinsate or equipment blank samples will be collected and analysed at a rate of 1 sample per day of sampling activities.

Additionally, the PID will be calibrated prior to the start of field activities and daily during field activities. Calibration records will be provided in the Validation Report.

Laboratory QA/QC procedures will comprise the following at a minimum:

- Laboratory Duplicate Samples: at least one per batch (where the batch exceeds five samples);
- Matrix Spiked Samples: at a rate of approximately 5% of all analyses. At least one per batch will be reported;
- Laboratory Blanks: at least one per batch and one per analyte;
- Laboratory Control Samples: analysed at a rate of at least one per process batch, and typically at a rate of 5% of analyses; and
- Surrogates: at least one per sample.

9.3.3 Laboratory Analyses

All laboratory analyses will be conducted by laboratories using methods accredited by the National Association of Testing Authorities, that adhere to the international standard methods referred in the ANZECC (1996) guidelines and Schedule B(3) of the NEPC (2013).

9.3.4 Decision Rules

To evaluate the sample analysis data, the following decision rules will be applied:

- Sampling locations are to be recorded by survey;
- Comparison of the sample analysis results to the soil validation criteria;
- Qualitative assessment of potential risk associated with any 'elevated' result(s);
- If required, assessment of data through checking that each individual sample concentration does not exceed the soil validation criteria by more than 250%;
- Calculation of the Upper Confidence Limit (UCL) on the average concentrations (of the relevant contaminant(s)) at a confidence level of 95 % (95 % UCL_{average}). This would include excavation and stockpile samples;

• If required, calculation of the standard deviation of the data. The standard deviation should be less than 50% of the validation criteria;

Commercial-in-Confidence

- Assessment of the sampling results for any soil/waste to be disposed off-site in accordance with NSW EPA (2014) Waste Classification Guidelines; and
- Assessment of the reliability of both the field and laboratory programs by reference to DQIs.

Where data indicates that unacceptable concentrations of chemical contaminants remain, the excavation and stockpiling process will be required at the relevant location(s).

9.4 Validation Reporting

A Validation Report will be prepared by the Validation Consultant on completion of remediation works. The report will contain an overview of the remediation activities conducted and details of the following:

- A survey plan of the site boundary;
- Volumes of excavated material and location of excavations/stockpiles;
- Field observation of the piling and excavation works, and observations of any Unexpected Finds Material:
- Tracking of materials disposed off-site or reused on other parts of the Site;
- Validation field methods;
- Plan of validation sampling locations;
- Site photographs;
- Analytical results of validation and characterisation soil samples and related QA/QC results;
- Confirmation that the required capping layer extends across all proposed public open space areas;
- A conclusion regarding the completeness of remediation and the suitability of the Site for the proposed land uses.

Supporting factual evidence will be included in the report. This will include a Stockpile Register for the project, landfill disposal certificates, VENM certificates (if required), NATA 'stamped' laboratory analysis certificates, interpretative summary tables and an overview of the works carried out during the remediation process. The report will include an assessment of all results and evaluation of the suitability of the Site for the proposed land use.

The Validation report will be prepared in accordance with the relevant NSW EPA endorsed guideline documents.

9.5 Long-Term Environmental Management Plan

Part of the Site validation process includes the preparation of a long-term EMP by the Validation Consultant in accordance with NSW EPA (2020) *Contaminated Land Guidelines: Consultants Reporting on Contaminated Land* and endorsement of the EMP by the Site Auditor. The existing Gunyama Park Aquatic and Recreation Centre Long Term EMP (JBS&G, 2020b) will be updated to include the Site.

The EMP includes the following:

- roles and responsibilities for implementing the EMP on an ongoing basis at the Site (including site inductions;
- the surveyed location of capped areas (confirmation via as-built construction plans);
- a summary of the CoPC and the areas of potential concern if the cap is proposed to be penetrated/excavated;
- requirement to maintain the integrity of the capping layer (refer to Section 7.3.3);

- ongoing environmental monitoring required (if any);
- management measures for potential future intrusive works within the proposed public open space areas (Gunyama Park); and

Commercial-in-Confidence

• requirement for the EMP to be included in the Site's Environmental Management System.

10.0 Conclusion

This RAP has generally been prepared to meet the requirements of the DUAP and EPA (1998) Managing Land Contamination: Planning Guidelines, State Environmental Planning Policy (SEPP) 55 - Remediation of Land considered for the preparation of this RAP and relevant NSW EPA endorsed guidelines including the NSW EPA (2020) Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.

It is concluded that upon successful implementation of the selected remediation strategy described by this RAP (and any associated EMP) and in conjunction with the proposed Stage 2 development works, the Site will have been made suitable for the proposed Gunyama Park (recreational open space) and George Julius Avenue North roadway.

11.0 References

ADE, 2018. Phase II Detailed Site Investigation 94-104 Epsom Road - MER-08-14531/DSI/v1d - 15 October 2018

ADE, 2021a. Site Remediation and Validation Report – Southern Basement, Landscaping Setbacks & Road Footprints, 94-104 Epsom Road, Zetland, NSW.

ADE, 2021b. Site Remediation and Validation Report – Northern Basement, 94-104 Epsom Road, Zetland, NSW.

AECOM, 2016. Remedial Action Plan, Gunyama Park Aquatic and Recreation Centre, - Zetland, NSW.

Coffey Geotechnics (NSW) Pty Ltd (Coffey) (Coffey 2015) Geotechnical Investigation Report, 106-116 Epsom Road, Zetland, NSW, 13 April 2015

Douglas Partners, 2016. Report on Geotechnical Investigation, Gunyama Park Aquatic and Recreation Centre, Joynton Avenue, Zetland.

Department of Urban Affairs (DUAP) and Planning and Environment Protection Authority (EPA), (DUAP), 1998. *Managing Land Contamination: Planning Guidelines, State Environmental Planning Policy (SEPP)* 55 - Remediation of Land.

El Australia, 2020. Additional Site Investigation, 106-110 Epsom Road, Zetland NSW.

Friebel, E. and Nadebaum, P., 2011. *Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 1: Technical development document.* CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia. September 2011.

JBS&G, 2020a. Gunyama Park Aquatic and Recreation Centre Validation Report.

JBS&G, 2020b. Gunyama Park Aquatic and Recreation Centre Long Term Environmental Management Plan

AECOM, 2014. Material Reuse Options Study, – Green Square Aquatic Centre, 132-138 Joynton Avenue, Zetland, NSW.

NEPM (Assessment of Site Contamination) Amendment Measure (NEPC, May 2013 as amended).

NHMRC, 2011. Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council. National Resource Management Ministerial Council, Commonwealth of Australia, Canberra. October, 2011.

NSW DEC, 2006a. Guidelines for the NSW Site Auditor Scheme (2nd edition).

NSW DEC, 2006b. Assessing Vibration: A Technical Guide.

NSW DEC, 2006c. Assessment and Management of Odour from Stationary Sources in NSW: Technical Framework.

NSW DEC, 2007. Guidelines for the Assessment and Management of Groundwater Contamination.

NSW DECC, 2009. Interim Construction Noise Guideline.

NSW EPA, 1994. Guidelines for Assessing Service Station Sites.

NSW EPA, 1995. Contaminated Sites: Sampling Design Guidelines.

NSW EPA, 1999. Environmental Criteria for Road Traffic Noise.

NSW EPA, 2000. Industrial Noise Policy and Application Notes.

NSW EPA, 2014. Waste Classification Guidelines. Part 1: Classifying Waste.

NSW EPA, 2022. Sampling Design Guidelines.

NSW EPA, 2020. Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.

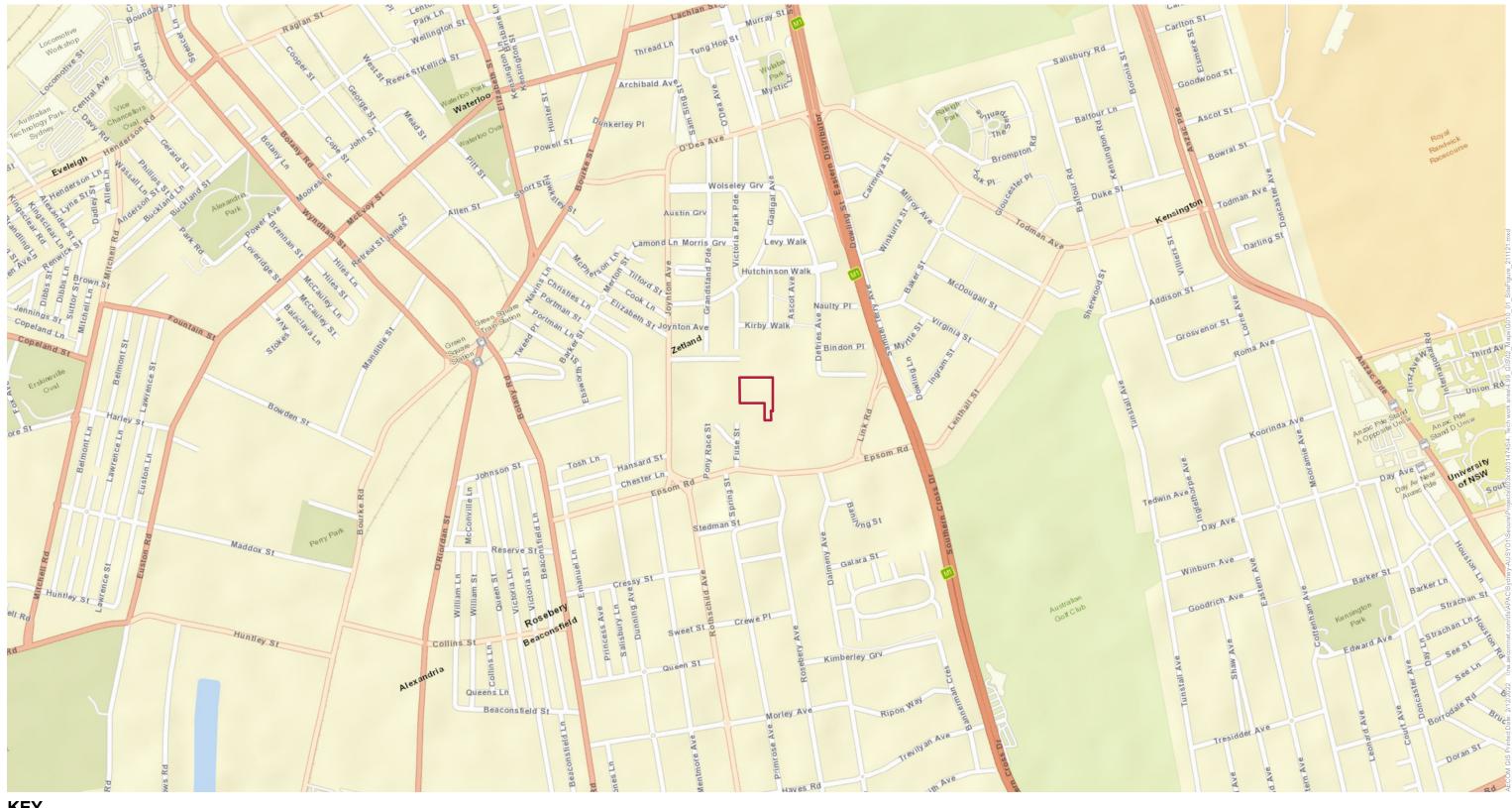
NSW Work Health and Safety Act 2011.

NSW Work Health and Safety Regulation 2011.

Safe Work Australia 2011. Code of Practice: How to Safely Remove Asbestos.

Safe Work Australia 2011. Code of Practice: How to manage and control asbestos in the workplace.

Senversa (December, 2020). Site Audit Report, Green Square Aquatic and Recreation Centre, 17 Zetland Avenue, Zetland, NSW.


Soil Conservation Service NSW, 1990. Sydney 1:100,000 Soil Landscape Series Sheet 9130.

WA Department of Health (DoH), 2008. Draft Guidelines for the Assessment, Remediation and Management of Asbestos Contaminated Sites in Western Australia.

USEPA (2000) Guidance for the Data Quality Objectives Process - EPA QA/G-4.

Appendix A

Figures

KEY

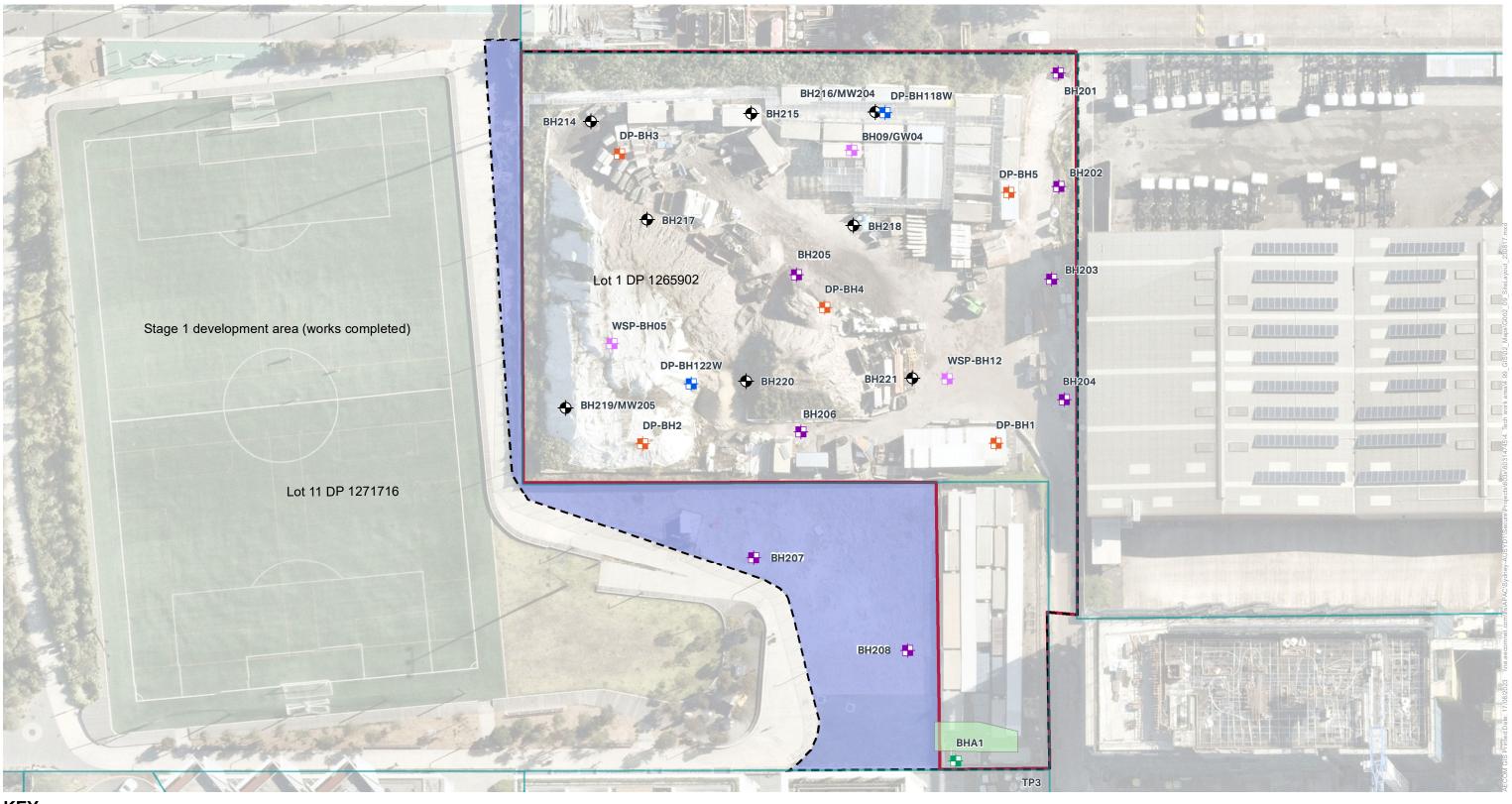

Site Boundary

FIGURE 1 - Gunyama Park and George Julius Avenue North Site Location

GREEN SQUARE TOWN CENTRE CLIENT CITY OF SYDNEY						
DRAWN	SC	2/12/2022	MAP #	REV	Project	
CHECK		DATE	G002	05	60477507	

KEY

Site Boundary

Stage 2 boundary
Cadastral boundary

UST excavation (removed and validated during Stage 1 (JBS&G 2020)

Remediated and validated during Stage 1 (JBS&G 2020)

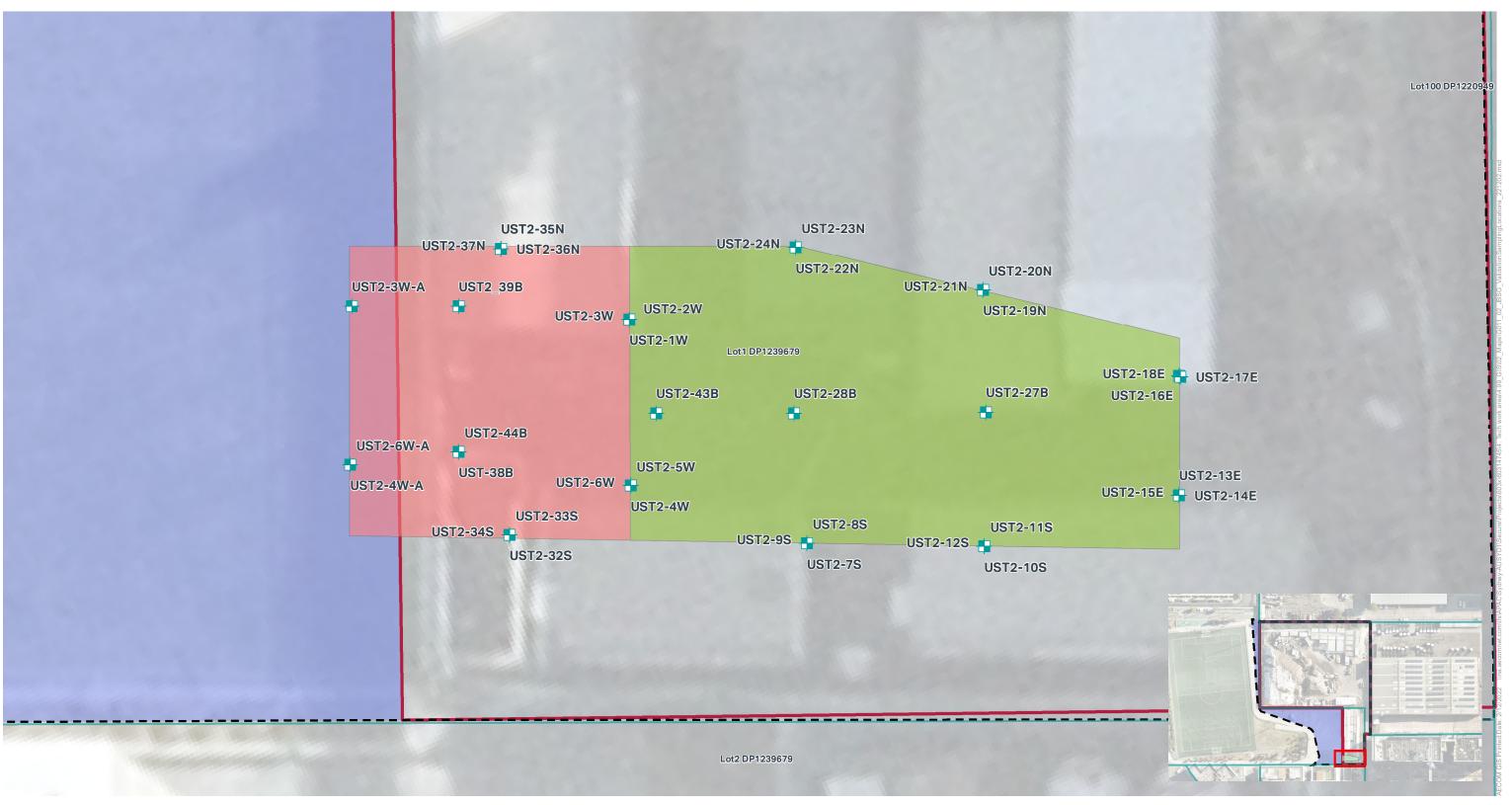
AECOM (2015) borehole locations

Previous borehole location (DP, 2009)

Previous borehole/well location (WSP, 2012)

Previous borehole location (DP, 2016)

♣ Previous borehole location (JBS&G 2020)♣ Previous borehole location (DP, 2023)



1:600	Å3
SHEET 1 of 1	GDA 1994 MGA Zone 56

FIGURE 2 - Gunyama Park and George Julius Avenue North Soil Borehole and Monitoring Well Locations

GREEN SQUARE TOWN CENTRE CITY OF SYDNEY							
DRAWN	17/08/2023	MAP #	REV	Project			
CHECK	DATE	G002	07	60477507			

Site Boundary
Stage 2 boundary
Cadastral boundary
UF02
UF02-Extension

Remediated and validated during Stage 1 (JBS&G 2020)
JBSG_ValidationSamplingLocations_01pt_221202

Disclaimer Spatial data used under licence from Land and Property Management
Au hority, NSW © 2015.

AECOM makes no representations or warranties of any kind, about the accuracy.

SCALE
1:60

SHEET
1 of 1

GDA 1994 MGA Zone 56

TITLE

FIGURE 3 - Gunyama Park and George
Julius Avenue North Validation Sampling
Locations

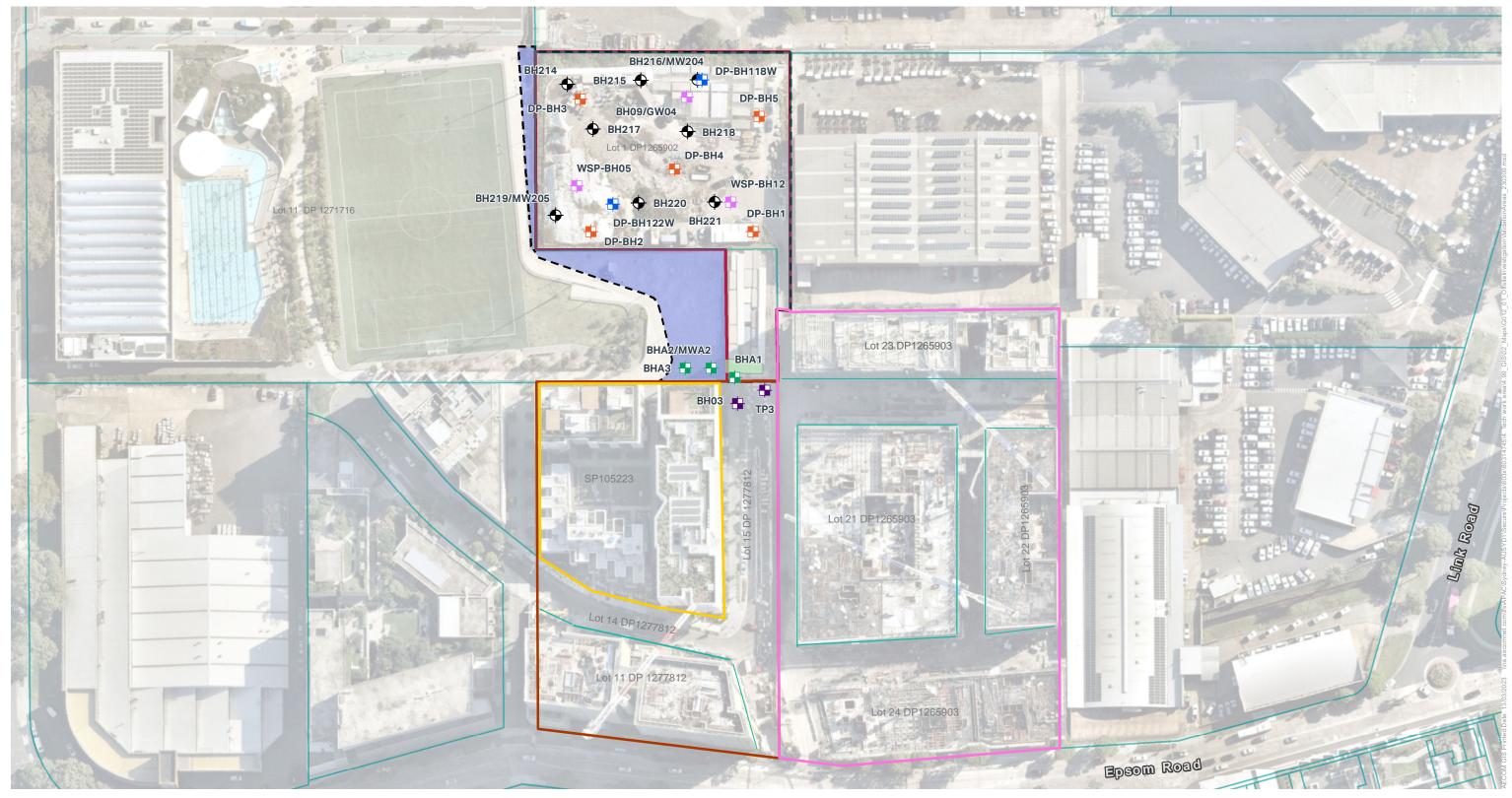
PROJECT

GREEN SQUARE TOWN CENTRE

CLIENT
CITY OF SYDNEY

DRAWN

DATE
2/12/2022


CHECK

DATE

G002

07

60477507

KEY

Site Boundary

Stage 2 boundary

Cadastral boundary

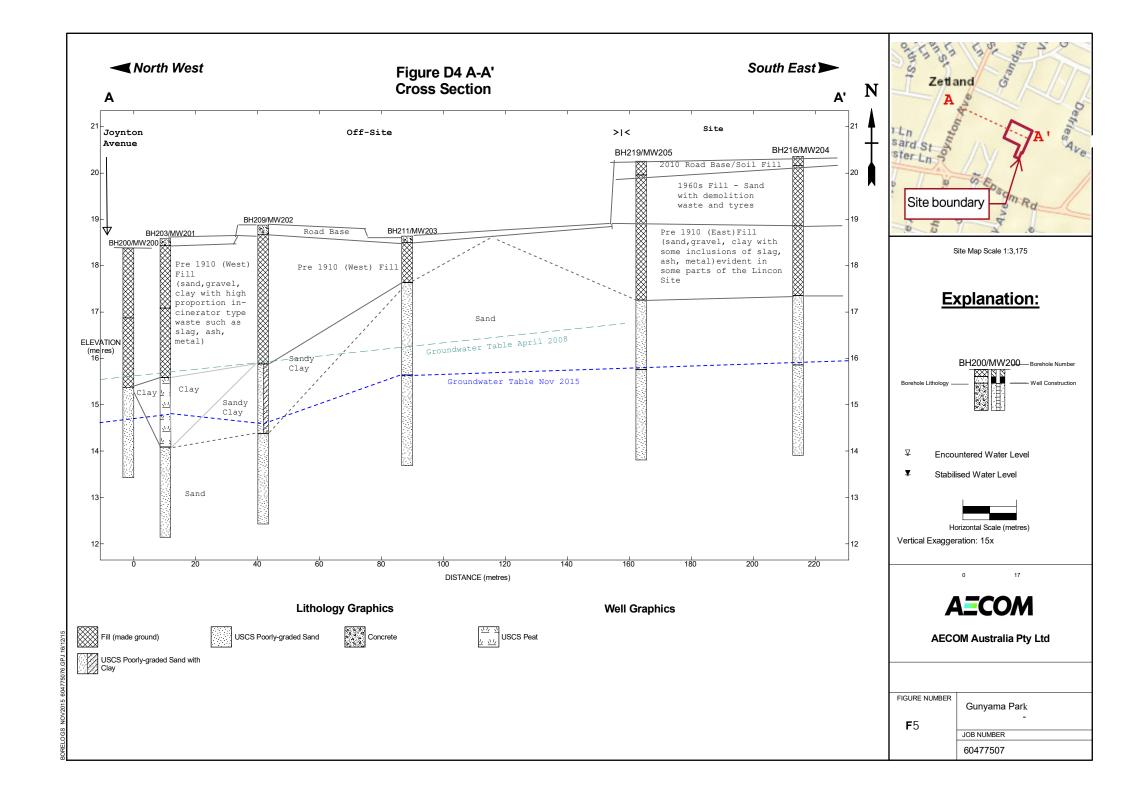
ADE (2021a) validation boundary

ADE (2021b) basement validation boundary

El (2020) investigation boundary

UST excavation (removed and validated during Stage 1 (JBS&G 2020)

Remediated and validated during Stage 1 (JBS&G 2020)


- ◆ AECOM (2015) borehole location
- Previous borehole location (DP, 2009)
- Previous borehole/well location (WSP, 2012)
- Previous borehole location (DP, 2016)
- Previous borehole location (JBS&G 2020)
- Remediation excavation (ADE, 2021a)

1:1,300	Å3
SHEET 1 of 1	COORDINATE SYSTEM GDA 1994 MGA Zone 56

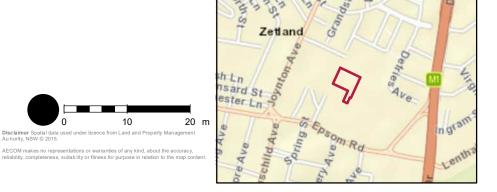
FIGURE 4 - Gunyama Park and George Julius Avenue North Off-Site Investigation and Validation Areas

GREEN S	SQUARE DNEY	TOWN (CENT	RE
DRAWN	13/03/2023	MAP #	REV	Project
CHECK	DATE	G012	80	6047750

KEY

Site Boundary

Stage 2 boundary


Cadastral boundary

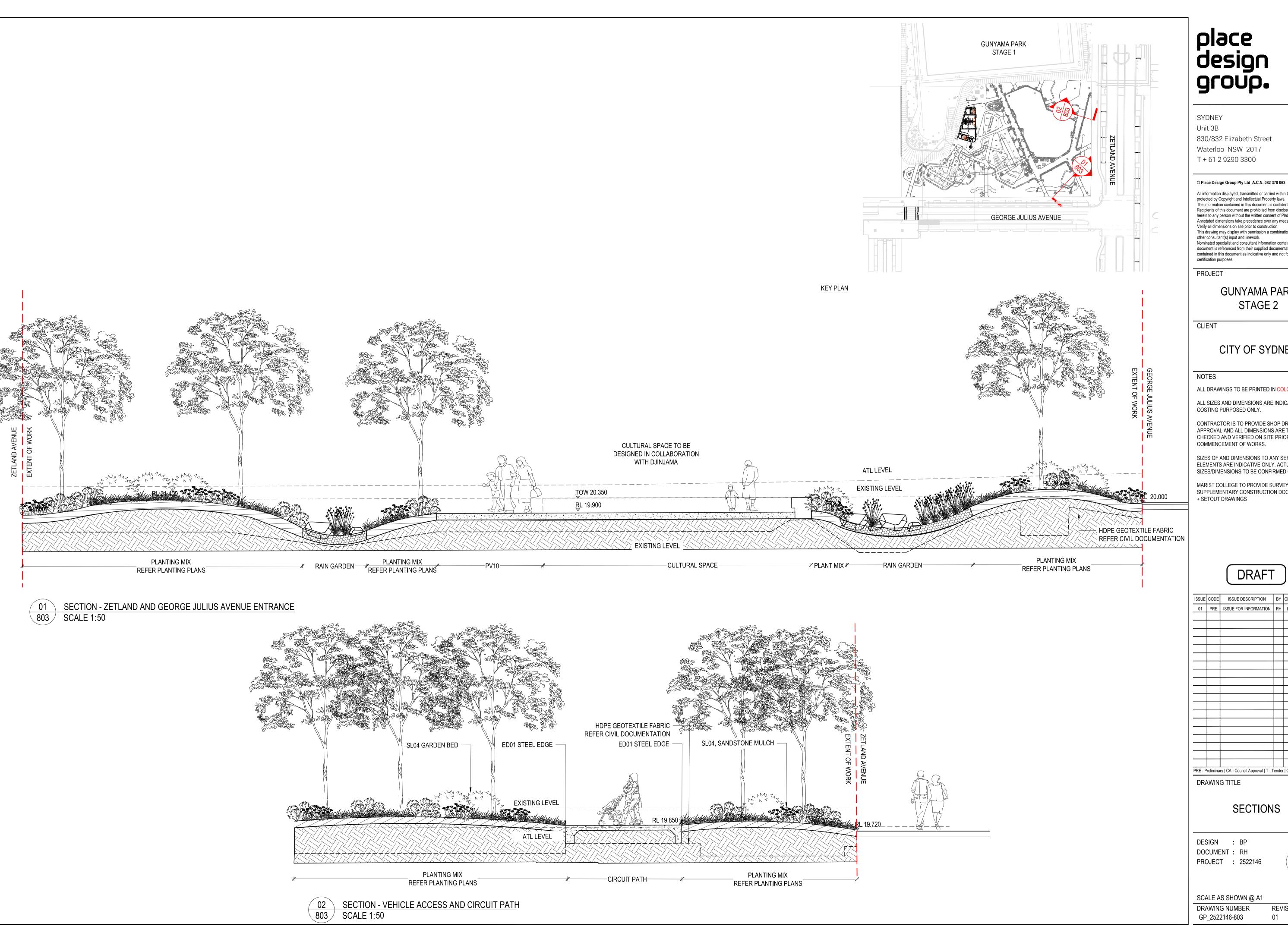
UST excavation (removed and validated during Stage 1 (JBS&G 2020)

- Remediated and validated during Stage 1 (JBS&G 2020)
- Extent of capping within the park

 Extent of capping within the road reserve

- ◆ AECOM (2015) borehole locations
- Previous borehole location (DP, 2009)
- Previous borehole/well location (WSP, 2012)
- Previous borehole location (DP, 2016)
- Previous borehole location (JBS&G 2020)

1:600	Å3
SHEET	COORDINATE SYSTEM
1 of 1	GDA 1994 MGA Zone 56
TITLE	


FIGURE 6 - Gunyama Park and George Julius Avenue North Capping Extent

GREEN SQUARE TOWN CENTRE LIENT CITY OF SYDNEY					
DRAWN	29/05/2023	MAP #	REV	Project	
CHECK	DATE	G002	07	6047750	

Appendix B

Development plans

Unit 3B 830/832 Elizabeth Street

All information displayed, transmitted or carried within this drawing is protected by Copyright and Intellectual Property laws. The information contained in this document is confidential. Recipients of this document are prohibited from disclosing the information herein to any person without the written consent of Place Design Group. Annotated dimensions take precedence over any measures of scale. Verify all dimensions on site prior to construction. This drawing may display with permission a combination of specialist and other consultant(s) input and linework. Nominated specialist and consultant information contained within this document is referenced from their supplied documentation and is contained in this document as indicative only and not for construction or

PROJECT

GUNYAMA PARK STAGE 2

CLIENT

CITY OF SYDNEY

NOTES

ALL DRAWINGS TO BE PRINTED IN COLOUR.

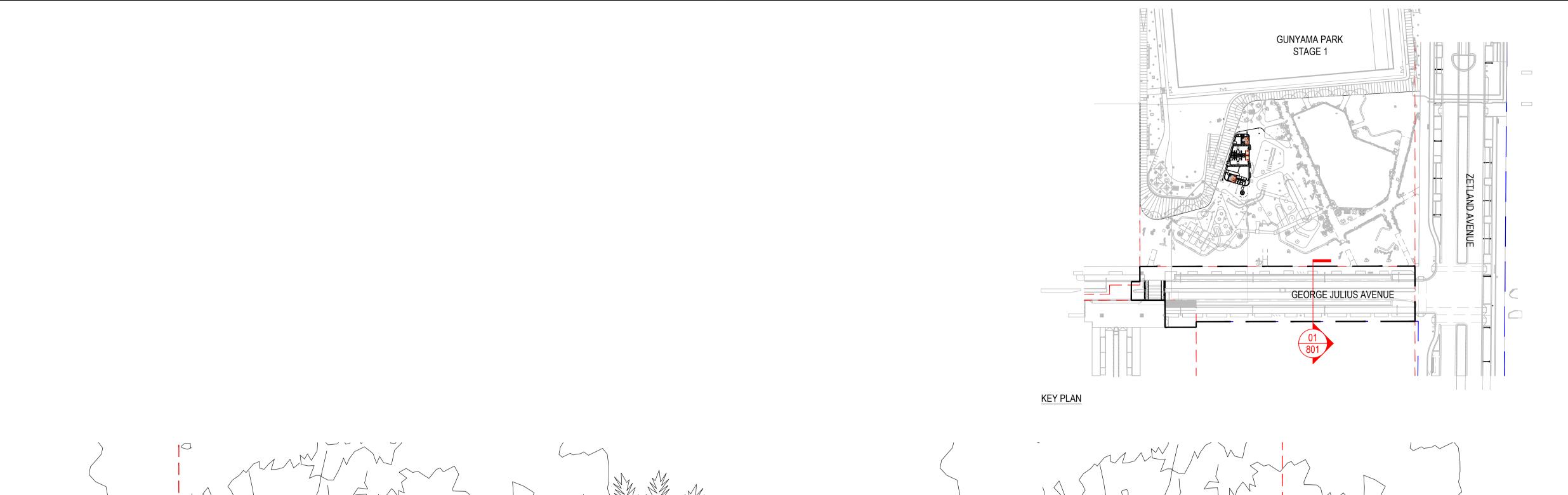
ALL SIZES AND DIMENSIONS ARE INDICATIVE + FOR COSTING PURPOSED ONLY.

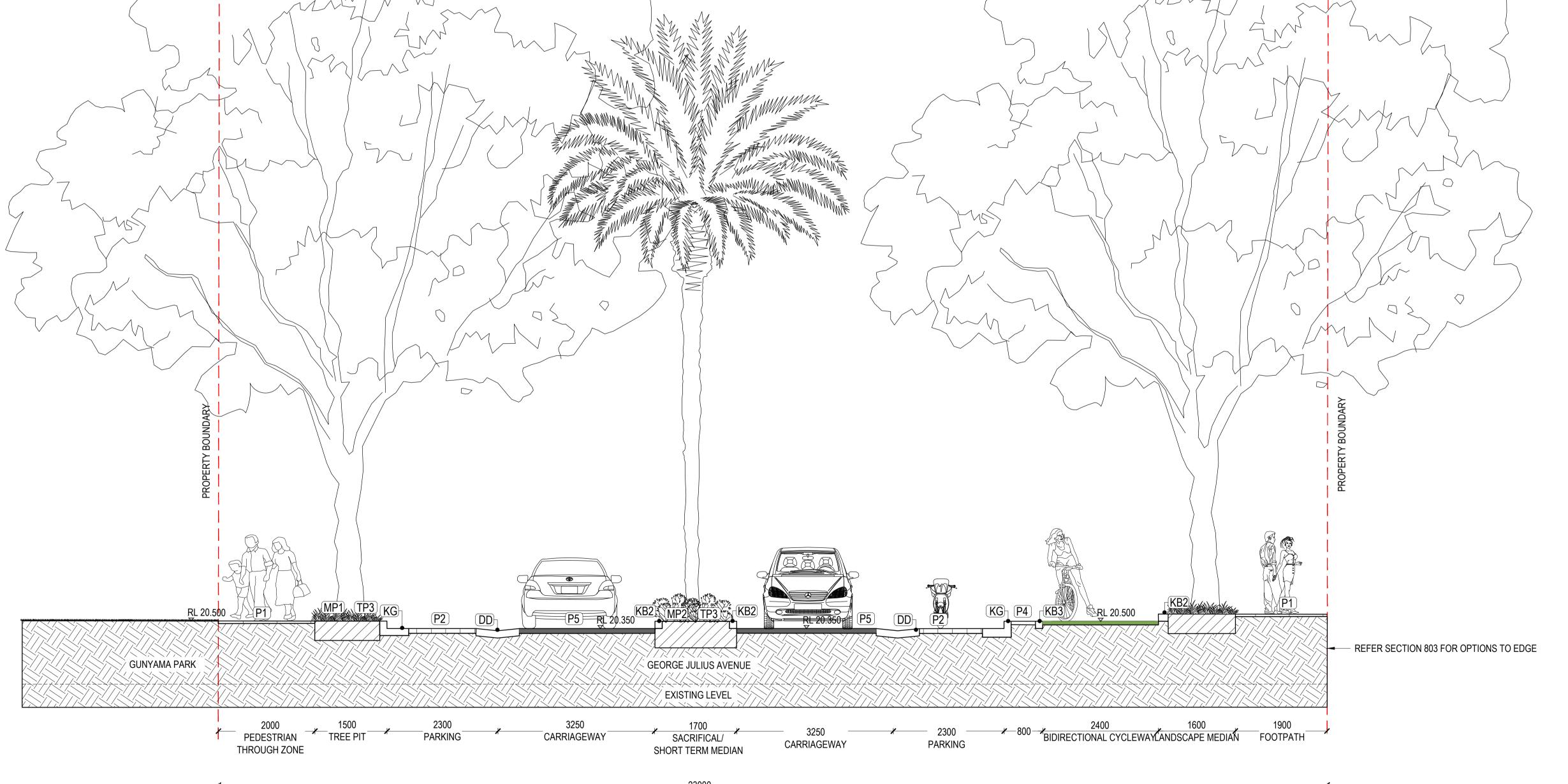
CONTRACTOR IS TO PROVIDE SHOP DRAWINGS FOR APPROVAL AND ALL DIMENSIONS ARE TO BE CHECKED AND VERIFIED ON SITE PRIOR TO COMMENCEMENT OF WORKS.

SIZES OF AND DIMENSIONS TO ANY SERVICE ELEMENTS ARE INDICATIVE ONLY. ACTUAL SIZES/DIMENSIONS TO BE CONFIRMED ON SITE.

MARIST COLLEGE TO PROVIDE SURVEY FOR SUPPLEMENTARY CONSTRUCTION DOCUMENTATION + SETOUT DRAWINGS

DRAFT


ISSUE	CODE	ISSUE DESCRIPTION	BY	СНК	DATE
01	PRE	ISSUE FOR INFORMATION	RH	LI	20.06.2023
			_		
PRE - P	relimina	 ry CA - Council Approval T - T	ender	 CON	N - Constructio
DRAWING TITLE					


SECTIONS

DESIGN : BP DOCUMENT: RH

SCALE AS SHOWN @ A1

DRAWING NUMBER GP_2522146-803

01 SECTION - GEORGE JULIUS AVENUE 801 SCALE 1:50

SYDNEY Unit 3B 830/832 Elizabeth Street Waterloo NSW 2017

T + 61 2 9290 3300

© Place Design Group Pty Ltd A.C.N. 082 370 063

All information displayed, transmitted or carried within this drawing is protected by Copyright and Intellectual Property laws. The information contained in this document is confidential. Recipients of this document are prohibited from disclosing the information herein to any person without the written consent of Place Design Group. Annotated dimensions take precedence over any measures of scale. Verify all dimensions on site prior to construction. This drawing may display with permission a combination of specialist and other consultant(s) input and linework. Nominated specialist and consultant information contained within this document is referenced from their supplied documentation and is contained in this document as indicative only and not for construction or

PROJECT

certification purposes.

GUNYAMA PARK STAGE 2

CLIENT

CITY OF SYDNEY

NOTES

ALL DRAWINGS TO BE PRINTED IN COLOUR.

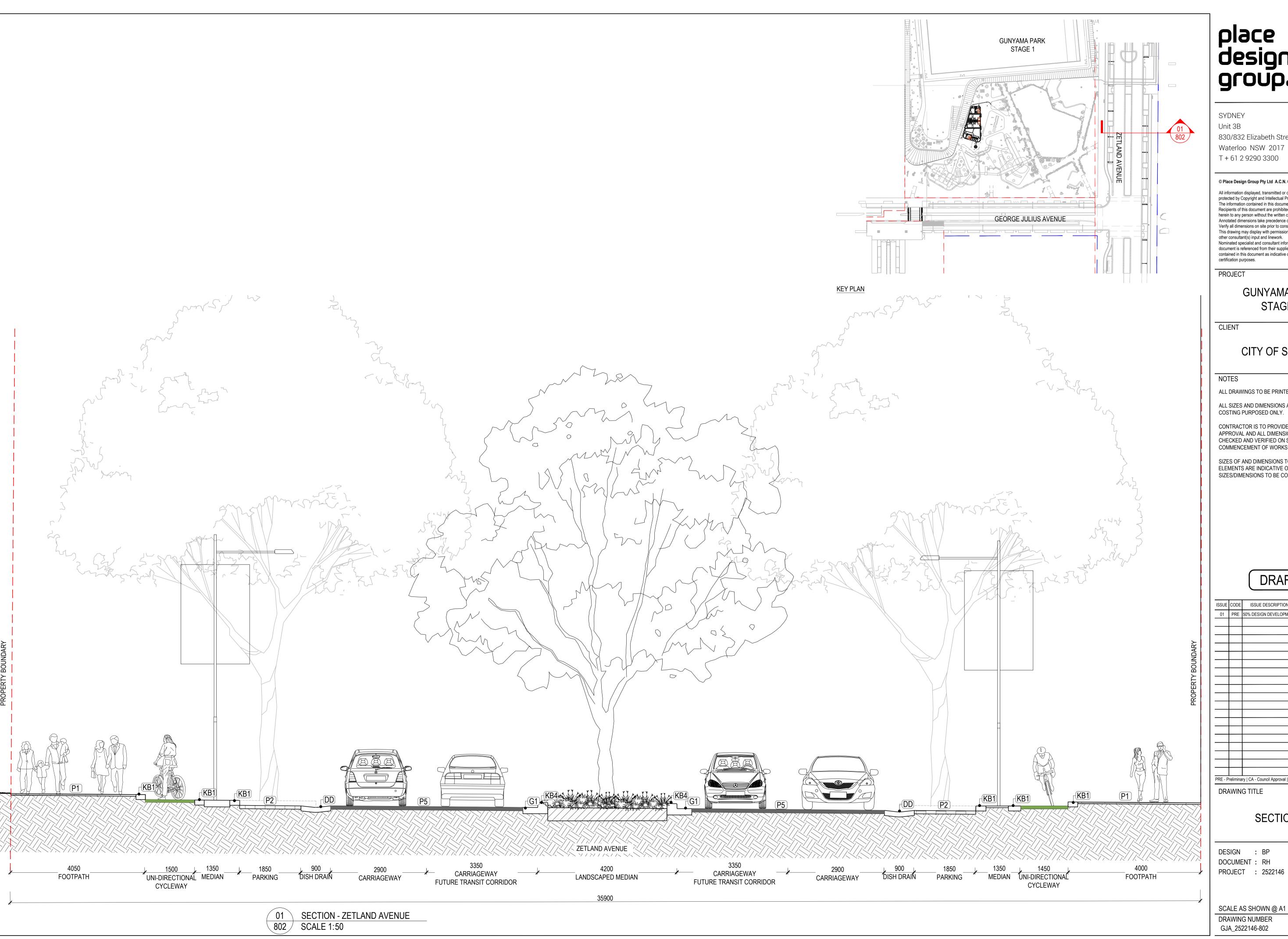
ALL SIZES AND DIMENSIONS ARE INDICATIVE + FOR COSTING PURPOSED ONLY.

CONTRACTOR IS TO PROVIDE SHOP DRAWINGS FOR APPROVAL AND ALL DIMENSIONS ARE TO BE CHECKED AND VERIFIED ON SITE PRIOR TO COMMENCEMENT OF WORKS.

SIZES OF AND DIMENSIONS TO ANY SERVICE ELEMENTS ARE INDICATIVE ONLY. ACTUAL SIZES/DIMENSIONS TO BE CONFIRMED ON SITE.

DRAFT

ISSUE	CODE	ISSUE DESCRIPTION	BY	СНК	DATE
01	PRE	50% DESIGN DEVELOPMENT	RH	LI	21.06.2023
			_		
			_		
PRE - F	I Prelimina	<u> </u> ry CA - Council Approval T - T	ender	CON	N - Constructio
		G TITLE			


SECTIONS

DESIGN : BP DOCUMENT: RH

SCALE AS SHOWN @ A1

DRAWING NUMBER GJA_2522146-801

place design group.

SYDNEY Unit 3B 830/832 Elizabeth Street Waterloo NSW 2017

© Place Design Group Pty Ltd A.C.N. 082 370 063

All information displayed, transmitted or carried within this drawing is protected by Copyright and Intellectual Property laws. The information contained in this document is confidential. Recipients of this document are prohibited from disclosing the information herein to any person without the written consent of Place Design Group. Annotated dimensions take precedence over any measures of scale. Verify all dimensions on site prior to construction. This drawing may display with permission a combination of specialist and other consultant(s) input and linework. Nominated specialist and consultant information contained within this document is referenced from their supplied documentation and is contained in this document as indicative only and not for construction or

PROJECT

GUNYAMA PARK STAGE 2

CLIENT

CITY OF SYDNEY

NOTES

ALL DRAWINGS TO BE PRINTED IN COLOUR.

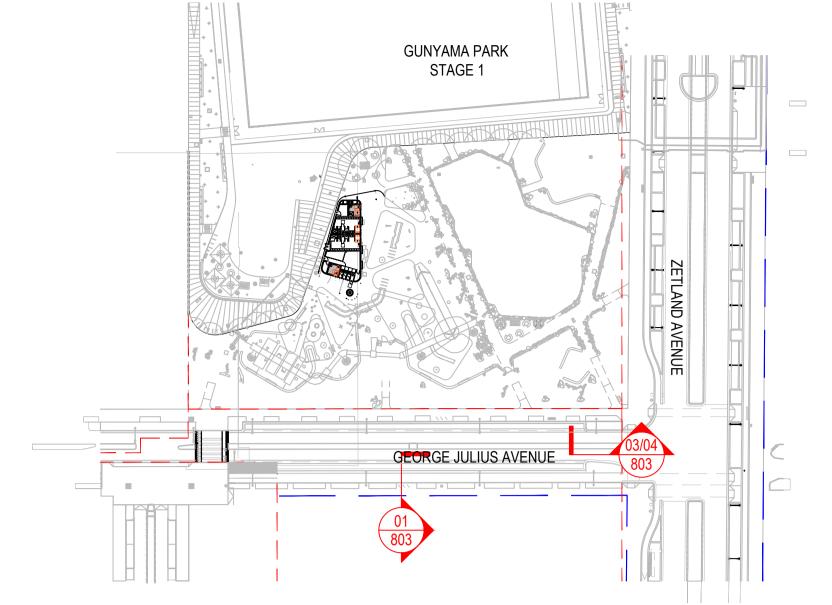
ALL SIZES AND DIMENSIONS ARE INDICATIVE + FOR COSTING PURPOSED ONLY.

CONTRACTOR IS TO PROVIDE SHOP DRAWINGS FOR APPROVAL AND ALL DIMENSIONS ARE TO BE CHECKED AND VERIFIED ON SITE PRIOR TO COMMENCEMENT OF WORKS.

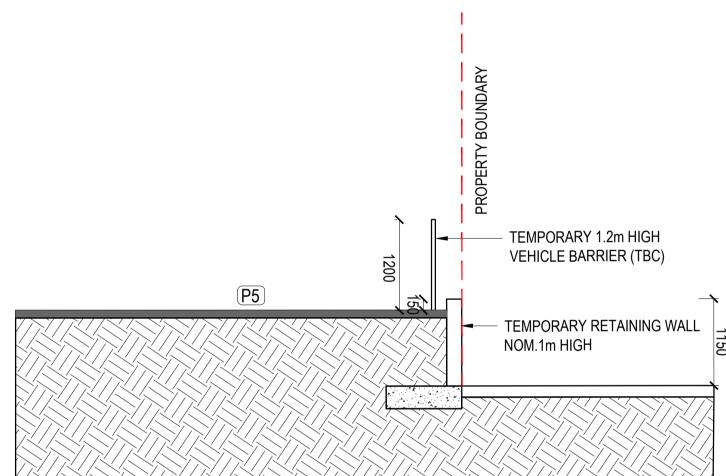
SIZES OF AND DIMENSIONS TO ANY SERVICE ELEMENTS ARE INDICATIVE ONLY. ACTUAL SIZES/DIMENSIONS TO BE CONFIRMED ON SITE.

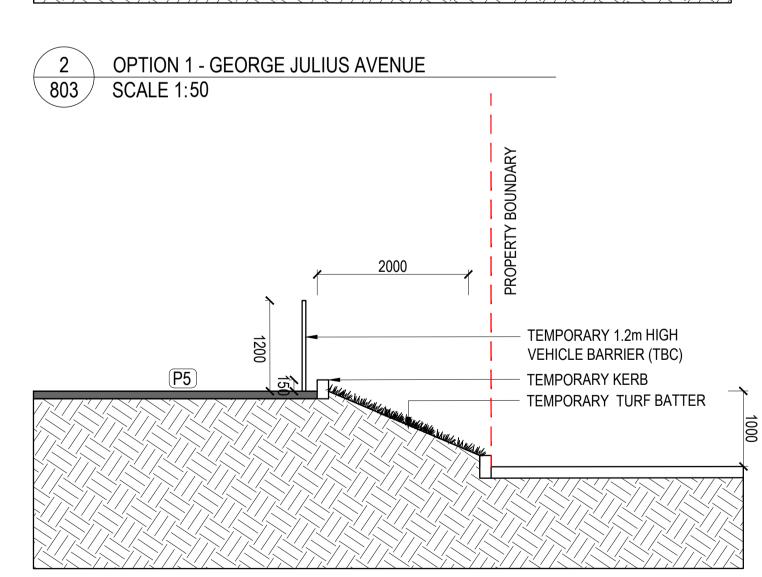
DRAFT

SUE	CODE	ISSUE DESCRIPTION	BY	СНК	DATE		
01	PRE	50% DESIGN DEVELOPMENT	RH	LI	21.06.2023		
E - P	E - Preliminary CA - Council Approval T - Tender CON - Construction						
	PRAWING TITLE						


SECTIONS

DESIGN : BP DOCUMENT: RH

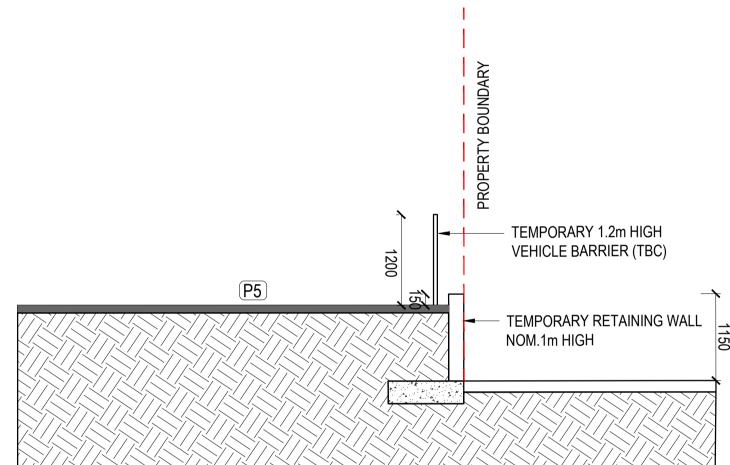



SCALE AS SHOWN @ A1

DRAWING NUMBER GJA_2522146-802

KEY PLAN

TEMPORARY 1.8m HIGH FENCE


TEMPORARY RETAINING WALL

RL 19.190

MAX.2M HIGH

KB2 RL 21.000 P1

EXISTING LEVEL

OPTION 2 - GEORGE JULIUS AVENUE 803 SCALE 1:50

DRAWING TITLE

DESIGN : BP

SYDNEY Unit 3B

830/832 Elizabeth Street

© Place Design Group Pty Ltd A.C.N. 082 370 063

protected by Copyright and Intellectual Property laws. The information contained in this document is confidential.

Verify all dimensions on site prior to construction.

other consultant(s) input and linework.

certification purposes.

PROJECT

CLIENT

NOTES

All information displayed, transmitted or carried within this drawing is

Recipients of this document are prohibited from disclosing the information herein to any person without the written consent of Place Design Group.

Annotated dimensions take precedence over any measures of scale.

This drawing may display with permission a combination of specialist and

GUNYAMA PARK

STAGE 2

CITY OF SYDNEY

ALL DRAWINGS TO BE PRINTED IN COLOUR.

APPROVAL AND ALL DIMENSIONS ARE TO BE CHECKED AND VERIFIED ON SITE PRIOR TO COMMENCEMENT OF WORKS.

SIZES OF AND DIMENSIONS TO ANY SERVICE

SIZES/DIMENSIONS TO BE CONFIRMED ON SITE.

DRAFT

 ISSUE
 CODE
 ISSUE DESCRIPTION
 BY
 CHK
 DATE

 01
 PRE
 50% DESIGN DEVELOPMENT
 RH
 LI
 21.06.2023

PRE - Preliminary | CA - Council Approval | T - Tender | CON - Construction

SECTIONS

ELEMENTS ARE INDICATIVE ONLY. ACTUAL

COSTING PURPOSED ONLY.

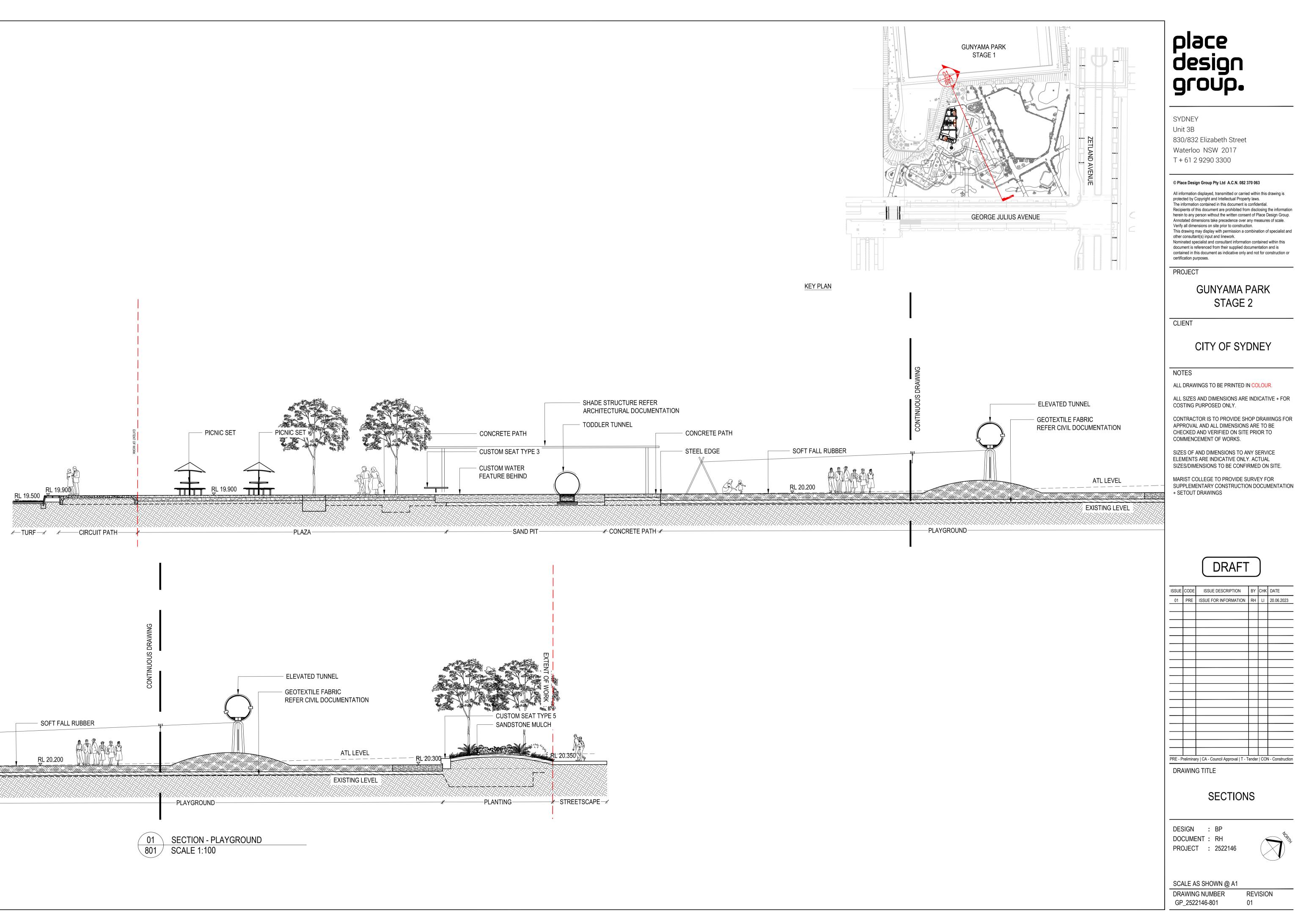
ALL SIZES AND DIMENSIONS ARE INDICATIVE + FOR

CONTRACTOR IS TO PROVIDE SHOP DRAWINGS FOR

Nominated specialist and consultant information contained within this document is referenced from their supplied documentation and is contained in this document as indicative only and not for construction or

Waterloo NSW 2017 T + 61 2 9290 3300

DOCUMENT : RH PROJECT : 2522146


REVISION

SCALE AS SHOWN @ A1 DRAWING NUMBER

GJA_2522146-803

SECTION - GEORGE JULIUS AVENUE AND YARD 803 SCALE 1:50

GEORGE JULIUS AVENUE

SYDNEY Unit 3B 830/832 Elizabeth Street Waterloo NSW 2017

© Place Design Group Pty Ltd A.C.N. 082 370 063

All information displayed, transmitted or carried within this drawing is protected by Copyright and Intellectual Property laws. The information contained in this document is confidential. Recipients of this document are prohibited from disclosing the information herein to any person without the written consent of Place Design Group. Annotated dimensions take precedence over any measures of scale. Verify all dimensions on site prior to construction. This drawing may display with permission a combination of specialist and other consultant(s) input and linework. Nominated specialist and consultant information contained within this document is referenced from their supplied documentation and is contained in this document as indicative only and not for construction or

GUNYAMA PARK STAGE 2

CITY OF SYDNEY

ALL DRAWINGS TO BE PRINTED IN COLOUR.

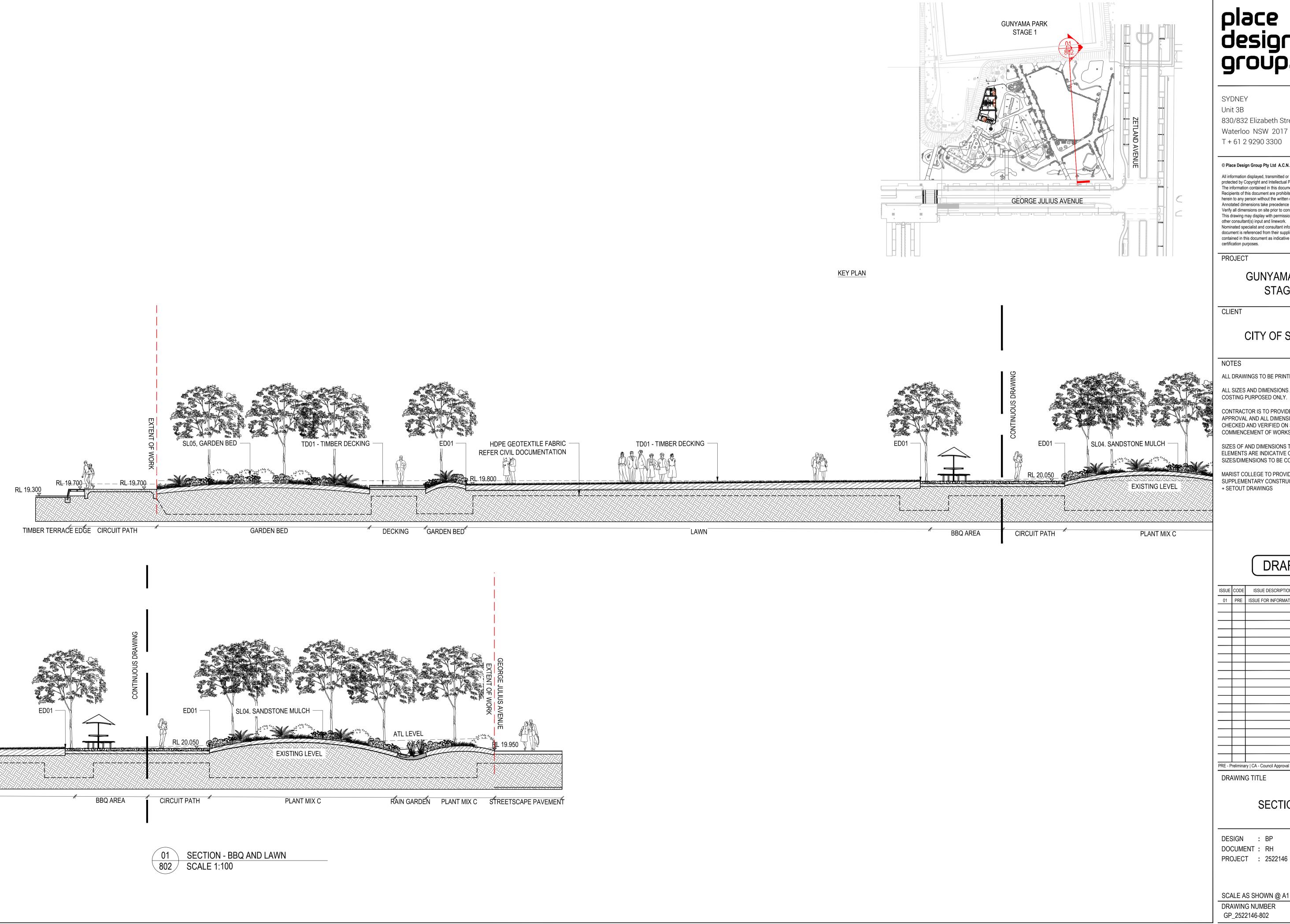
ALL SIZES AND DIMENSIONS ARE INDICATIVE + FOR COSTING PURPOSED ONLY.

APPROVAL AND ALL DIMENSIONS ARE TO BE CHECKED AND VERIFIED ON SITE PRIOR TO COMMENCEMENT OF WORKS.

SIZES OF AND DIMENSIONS TO ANY SERVICE ELEMENTS ARE INDICATIVE ONLY. ACTUAL SIZES/DIMENSIONS TO BE CONFIRMED ON SITE.

MARIST COLLEGE TO PROVIDE SURVEY FOR SUPPLEMENTARY CONSTRUCTION DOCUMENTATION + SETOUT DRAWINGS

DRAFT


SSUE	CODE	ISSUE DESCRIPTION	BY	СНК	DATE
01	PRE	ISSUE FOR INFORMATION	RH	LI	20.06.2023
			_		
RE - P	relimina	ry CA - Council Approval T - T	ender	CON	N - Construction
DR/	NIW	G TITLE			

SECTIONS

DESIGN : BP DOCUMENT: RH

SCALE AS SHOWN @ A1

DRAWING NUMBER REVISION 01

SYDNEY Unit 3B 830/832 Elizabeth Street Waterloo NSW 2017

© Place Design Group Pty Ltd A.C.N. 082 370 063

All information displayed, transmitted or carried within this drawing is protected by Copyright and Intellectual Property laws. The information contained in this document is confidential. Recipients of this document are prohibited from disclosing the information herein to any person without the written consent of Place Design Group. Annotated dimensions take precedence over any measures of scale. Verify all dimensions on site prior to construction. This drawing may display with permission a combination of specialist and other consultant(s) input and linework. Nominated specialist and consultant information contained within this document is referenced from their supplied documentation and is contained in this document as indicative only and not for construction or

GUNYAMA PARK STAGE 2

CITY OF SYDNEY

ALL DRAWINGS TO BE PRINTED IN COLOUR.

ALL SIZES AND DIMENSIONS ARE INDICATIVE + FOR COSTING PURPOSED ONLY.

CONTRACTOR IS TO PROVIDE SHOP DRAWINGS FOR APPROVAL AND ALL DIMENSIONS ARE TO BE CHECKED AND VERIFIED ON SITE PRIOR TO COMMENCEMENT OF WORKS.

SIZES OF AND DIMENSIONS TO ANY SERVICE ELEMENTS ARE INDICATIVE ONLY. ACTUAL SIZES/DIMENSIONS TO BE CONFIRMED ON SITE.

MARIST COLLEGE TO PROVIDE SURVEY FOR SUPPLEMENTARY CONSTRUCTION DOCUMENTATION

DRAFT

ISSUE	CODE	ISSUE DESCRIPTION	BY	СНК	DATE	
01	PRE	ISSUE FOR INFORMATION	RH	LI	20.06.2023	
PRE - Preliminary CA - Council Approval T - Tender CON - Construction						
DRAWING TITLE						

SECTIONS

DESIGN : BP DOCUMENT: RH

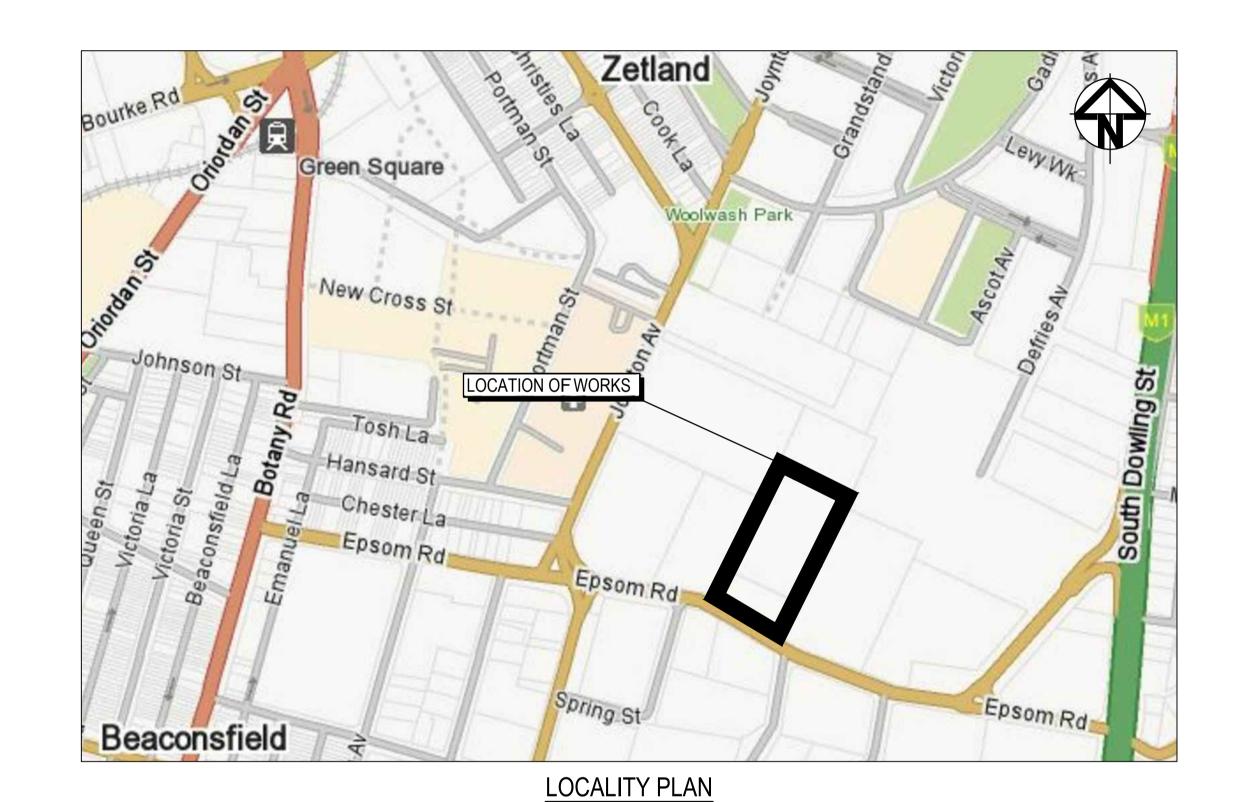
SCALE AS SHOWN @ A1

94-104 EPSOM ROAD, ZETLAND CIVIL WORKS PACKAGE

City Services
City of Sydney
PUBLIC DOMAIN PLAN APPROVAL
SECTION 138 ROADS ACT 1993 APPROVAL
Drawings approved for construction, pursuant to:
DA No.: D/2019/976
Condition No.: 66,121,132
and City of Sydney Letter Dated: 25/8/21

Date Plotted: 14 Aug 2020 - 05:01PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES - External Road\18-557-C101.dwg

DRAWING LIST


18-557-C140

18-557-C141

ROSE VALLEY WAY CONTROL LINE MC02 CROSS SECTIONS SHEET 6

ROSE VALLEY WAY CONTROL LINE MC02 CROSS SECTIONS SHEET 7

	_		
18-557-C101	COVER SHEET AND LOCALITY PLAN	18-557-C143	KERB RETURN PROFILES
18-557-C102	NOTES AND LEGENDS	18-557-C145	PAVEMENT PLAN
18-557-C103	CITY OF SYDNEY STANDARD DETAILS		
		18-557-C146	SIGNAGE AND LINEMARKING PLAN
18-557-C105	TYPICAL SECTIONS SHEET 1		
18-557-C106	TYPICAL SECTIONS SHEET 2	18-557-C150	SERVICES AND UTILITIES CO-ORDINATION PLAN
18-557-C108	BULK EARTHWORKS CUT/FILL PLAN	18-557-C160	INTERNAL STORMWATER DRAINAGE CATCHMENT PLAN
		18-557-C161	EXTERNAL STORMWATER DRAINAGE CATCHMENT PLAN
18-557-C110	SITEWORKS AND STORMWATER DRAINAGE PLAN		
		18-557-C170	SITEWORKS DETAILS
18-557-C115	RETAINING WALL RW01 PLAN AND ELEVATION		
		18-557-C171	STORMWATER DRAINAGE DETAILS SHEET 1
18-557-C117	STORMWATER DRAINAGE LONGITUDINAL SECTIONS	18-557-C172	STORMWATER DRAINAGE DETAILS SHEET 2
18-557-C120	GEORGE JULIUS AVENUE CONTROL LINE MC01 LONGITUDINAL SECTIONS SHEET 1	18-557-C180	EROSION AND SEDIMENTATION CONTROL PLAN
18-557-C121	GEORGE JULIUS AVENUE CONTROL LINE MC01 LONGITUDINAL SECTIONS SHEET 2	18-557-C181	EROSION AND SEDIMENTATION CONTROL DETAILS
18-557-C122 18-557-C123	ROSE VALLEY WAY CONTROL LINE MC02 LONGITUDINAL SECTIONS SHEET 1 ROSE VALLEY WAY CONTROL LINE MC02 LONGITUDINAL SECTIONS SHEET 2		
18-557-C124	EPSOM ROAD CONTROL LINE MC03 LONGITUDINAL SECTIONS SHEET 1	18-557-C184	PUBLIC DOMAIN PD01 BOUNDARY LONGITUDINAL SECTION SHEET 1
18-557-C125	EPSOM ROAD CONTROL LINE MC03 LONGITUDINAL SECTIONS SHEET 2	18-557-C185	PUBLIC DOMAIN PD01 BOUNDARY LONGITUDINAL SECTION SHEET 2
18-557-C130	GEORGE JULIUS AVENUE CONTROL LINE MC01 CROSS SECTIONS SHEET 1	18-557-C186	PUBLIC DOMAIN PD01 BOUNDARY LONGITUDINAL SECTION SHEET 3
		18-557-C187	PUBLIC DOMAIN PD02 BOUNDARY LONGITUDINAL SECTION SHEET 1
18-557-C131	GEORGE JULIUS AVENUE CONTROL LINE MC01 CROSS SECTIONS SHEET 2	18-557-C188	PUBLIC DOMAIN PD02 BOUNDARY LONGITUDINAL SECTION SHEET 2
18-557-C132	GEORGE JULIUS AVENUE CONTROL LINE MC01 CROSS SECTIONS SHEET 3	18-557-C189	PUBLIC DOMAIN PD02 BOUNDARY LONGITUDINAL SECTION SHEET 3
18-557-C133	GEORGE JULIUS AVENUE CONTROL LINE MC01 CROSS SECTIONS SHEET 4		
18-557-C134	GEORGE JULIUS AVENUE CONTROL LINE MC01 CROSS SECTIONS SHEET 5	18-557-C190	PUBLIC DOMAIN PD01 BOUNDARY CROSS SECTIONS SHEET 1
18-557-C135	ROSE VALLEY WAY CONTROL LINE MC02 CROSS SECTIONS SHEET 1	18-557-C191	PUBLIC DOMAIN PD01 BOUNDARY CROSS SECTIONS SHEET 2
18-557-C136	ROSE VALLEY WAY CONTROL LINE MC02 CROSS SECTIONS SHEET 2	18-557-C192	PUBLIC DOMAIN PD01 BOUNDARY CROSS SECTIONS SHEET 3
18-557-C137	ROSE VALLEY WAY CONTROL LINE MC02 CROSS SECTIONS SHEET 3	18-557-C193	PUBLIC DOMAIN PD02 BOUNDARY CROSS SECTIONS SHEET 1
18-557-C138	ROSE VALLEY WAY CONTROL LINE MC02 CROSS SECTIONS SHEET 4	18-557-C194	PUBLIC DOMAIN PD02 BOUNDARY CROSS SECTIONS SHEET 2
18-557-C139	ROSE VALLEY WAY CONTROL LINE MC02 CROSS SECTIONS SHEET 5		
10 001 0 100	1.002 VALLET WAT CONTINUE LINE WOOL ON COO CLOTICING OFFICE O		

Bar Scales Civil Engineers and Project Managers ADC NTS Level 7, 153 Walker Street North Sydney NSW 2065 THIS DRAWING CANNOT BE **KARIMBLA** 94-104 EPSOM ROAD COPIED OR REPRODUCED IN ZETLAND CONSTRUCTION SERVICES (NSW) MGA ANY FORM OR USED FOR ANY PTY LIMITED OTHER PURPOSE OTHER THAN AHD Level 11, 528 Kent Street, Sydney NSW 2000 THAT ORIGINALLY INTENDED Tel: (02) 9287 2888 Fax: (02) 9287 2777 WITHOUT THE WRITTEN FOR APPROVAL Email: info@design.meriton.com.au **COVER SHEET** PERMISSION OF AT&L NOT FOR CONSTRUCTION Internet: http://www.meriton.com.au ISSUED FOR APPROVAL 14-08-20 AND LOCALITY PLAN Project - Drawing No. 18-557-C101 Date Description

SITEWORKS NOTES

1. ORIGIN OF LEVELS:- REFER SURVEY NOTES.

2. CONTRACTOR MUST VERIFY ALL DIMENSIONS AND EXISTING LEVELS ON SITE PRIOR TO COMMENCEMENT OF WORK. ANY DISCREPANCIES TO BE REPORTED TO AT & L.

3. MAKE SMOOTH CONNECTION WITH EXISTING WORKS

4. ALL TRENCH BACKFILL MATERIAL SHALL BE COMPACTED TO THE SAME DENSITY AS THE ADJACENT MATERIAL.

5. ALL SERVICE TRENCHES UNDER VEHICULAR PAVEMENTS SHALL BE BACKFILLED WITH SAND TO 300mm ABOVE PIPE. WHERE PIPE IS UNDER PAVEMENTS BACKFILL REMAINDER OF TRENCH TO UNDERSIDE OF PAVEMENT WITH SAND OR APPROVED GRANULAR MATERIAL COMPACTED IN 150mm LAYERS TO MINIMUM 98% MODIFIED MAXIMUM DRY DENSITY IN ACCORDANCE WITH AS 1289 5.2.1. (OR A DENSITY INDEX OF NOT LESS THAN 75)

6. PROVIDE 10mm WIDE EXPANSION JOINTS BETWEEN BUILDINGS AND ALL CONCRETE OR UNIT PAVEMENTS.

7. ASPHALTIC CONCRETE SHALL CONFORM TO RMS. SPECIFICATION R116.

8. ALL BASECOURSE MATERIAL SHALL BE IGNEOUS ROCK QUARRIED MATERIAL TO COMPLY WITH RMS. FORM 3051 (UNBOUND), RMS. FORM 3052 (BOUND) COMPACTED TO MINIMUM 98% MODIFIED DENSITY IN ACCORDANCE WITH AS 1289 5.2.1 FREQUENCY OF COMPACTION TESTING SHALL NOT BE LESS THAN 1 TEST PER 50m³ OF BASECOURSE MATERIAL PLACED.

9. ALL SUB-BASE COURSE MATERIAL SHALL BE IGNEOUS ROCK QUARRIED MATERIAL TO COMPLY WITH RMS, FORM 3051, 3051,1 AND COMPACTED TO MINIMUM 95% MODIFIED DENSITY IN ACCORDANCE WITH A.S 1289 5.2. FREQUENCY OF COMPACTION TESTING SHALL NOT BE LESS THAN 1 TEST PER 50m³OF SUB-BASE COURSE MATERIAL PLACED.

10. AS AN ALTERNATIVE TO THE USE OF IGNEOUS ROCK AS A SUB-BASE MATERIAL IN (9) A CERTIFIED RECYCLED CONCRETE MATERIAL COMPLYING WITH RMS. FORM 3051 AND 3051.1 WILL BE CONSIDERED. SUBJECT TO MATERIAL SAMPLES AND APPROPRIATE CERTIFICATIONS BEING PROVIDED TO THE SATISFACTION OF AT & L.

11. SHOULD THE CONTRACTOR WISH TO USE A RECYCLED PRODUCT THIS SHALL BE CLEARLY INDICATED IN THEIR TENDER AND THE PRICE DIFFERENCE BETWEEN AN IGNEOUS PRODUCT AND A RECYCLED PRODUCT SHALL BE CLEARLY INDICATED.

12. WHERE NOTED ON THE DRAWINGS THAT WORKS ARE TO BE CARRIED BY OTHERS, (eq. ADJUSTMENT OF SERVICES), THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CO-ORDINATION OF THESE WORKS.

STORMWATER DRAINAGE NOTES

1. STORMWATER DESIGN CRITERIA (A) AVERAGE RECURRENCE INTERVAL: 1:100 YEARS ROOFED AREAS TO SURCHARGE PIT 1:20 YEARS EXTERNAL PAVEMENTS

(B) RAINFALL INTENSITIES: TIME OF CONCENTRATION: 5 MINUTES 1:100 YEARS= 269.5 mm/hr 1:20 YEARS= 210.7 mm/hr (C) RUNOFF COEFFICIENTS: ROOF AREAS:

EXTERNAL PAVEMENTS: C10 PIPES 300 DIA. AND LARGER TO BE REINFORCED CONCRETE CLASS '4'

APPROVED SPIGOT AND SOCKET WITH RUBBER RING JOINTS. U.N.O. 3. PIPES UP TO 300 DIA SHALL BE SEWER GRADE uPVC WITH SOLVENT WELDED JOINTS.

4. EQUIVALENT STRENGTH VCP OR FRC PIPES MAY BE USED.

5. ALL STORMWATER DRAINAGE LINES UNDER PROPOSED BUILDING SLABS TO BE upvc pressure PIPE GRADE 6. ENSURE ALL VERTICALS AND DOWNPIPES ARE uPVC PRESSURE PIPE, GRADE 6 FOR A MIN OF 3.0m IN HEIGHT

6. PIPES TO BE INSTALLED TO TYPE HS3 (ROAD) HS2 (LOTS) SUPPORT IN ACCORDANCE WITH AS 3725 (1989) IN ALL CASES BACKFILL TRENCH WITH SAND TO 300mm ABOVE PIPE. WHERE PIPE IS UNDER PAVEMENTS BACKFILL REMAINDER OF TRENCH TO UNDERSIDE OF PAVEMENT WITH SAND OR APPROVED GRANULAR MATERIAL COMPACTED IN 150mm LAYERS TO MINIMUM 98% STANDARD MAXIMUM DRY DENSITY IN ACCORDANCE WITH AS 1289 5.2.1. (OR A DENSITY INDEX OF NOT LESS THAN 75)

7. ALL INTERNAL WORKS WITHIN PROPERTY BOUNDARIES ARE TO COMPLY WITH THE REQUIREMENTS OF AS 3500 3.1 (1998) AND AS/NZS 3500 3.2

8. PRECAST PITS MAY BE USED EXTERNAL TO THE BUILDING SUBJECT TO APPROVAL BY AT & L.

9. ENLARGERS, CONNECTIONS AND JUNCTIONS TO BE PREFABRICATED FITTINGS WHERE PIPES ARE LESS THAN 300 DIA.

10. WHERE SUBSOIL DRAINS PASS UNDER FLOOR SLABS AND VEHICULAR PAVEMENTS, UNSLOTTED uPVC SEWER GRADE PIPE IS TO BE USED.

11. CARE IS TO BE TAKEN WITH LEVELS OF STORMWATER LINES. GRADES SHOWN ARE NOT TO BE REDUCED WITHOUT APPROVAL. 12. GRATES AND COVERS SHALL CONFORM TO AS 3996.

13. ALL INTERNAL PIT DIMENSIONS TO CONFORM TO AS3500.3 TABLE 8.2.

14. AT ALL TIMES DURING CONSTRUCTION OF STORMWATER PITS, ADEQUATE SAFETY PROCEDURES SHALL BE TAKEN TO ENSURE AGAINST THE POSSIBILITY OF PERSONNEL FALLING DOWN PITS.

5. ALL EXISTING STORMWATER DRAINAGE LINES AND PITS THAT ARE TO REMAIN ARE TO BE INSPECTED AND CLEANED. DURING THIS PROCESS ANY PART OF THE STORMWATER DRAINAGE SYSTEM THAT WARRANTS REPAIR SHALL BE REPORTED TO THE SUPERINTENDENT/ENGINEER FOR FURTHER DIRECTIONS.

ISSUED FOR APPROVAL

Description

SURVEY NOTES

THE EXISTING SITE CONDITIONS SHOWN ON THE FOLLOWING DRAWINGS HAVE BEEN INVESTIGATED BY JBW SURVEYORS PTY LTD., BEING REGISTERED SURVEYORS. THE INFORMATION IS SHOWN TO PROVIDE A BASIS FOR DESIGN. AT & L DOES NOT GUARANTEE THE ACCURACY OR COMPLETENESS OF THE SURVEY BASE OR ITS SUITABILITY AS A BASIS FOR CONSTRUCTION DRAWINGS.

SHOULD DISCREPANCIES BE ENCOUNTERED DURING CONSTRUCTION BETWEEN THE SURVEY DATA AND ACTUAL FIELD DATA. CONTACT AT & L.

THE FOLLOWING NOTES HAVE BEEN TAKEN DIRECTLY FROM THE ORIGINAL SURVEY DOCUMENTS.

GENERAL NOTES

BEEN SURVEYED

CAD DIGITAL DATA: JBW SURVEYORS PTY LTD

THE INFORMATION SUPPLIED IN THIS DATA FILE IS SUPPLIED ON THE CONDITION THAT THESE GENERAL NOTES ARE ALWAYS STORED WITH THE SUPPLIED CAD DRAWING, & IF THE DATA IS PROVIDED TO ANY PARTY ON ANY FORM OF HARD COPY OR COMPUTER MEDIA THEN THESE GENERAL NOTES WILL ALSO BE A PART OF THAT HARD MEDIA COPY OR COMPUTER MEDIA DATA:

ORIGIN OF LEVELS (SCIMS-DATED 20/09/18) SSM 49315 RL 21.502 A;H;D VIDE SCIMS

THE GRID SYSTEM SHOWN RELATES TO THE MAPPING GRID OF AUSTRALIA (MGA). THE ORIGIN OF WHICH IS: PM 59536 E=334192.382 N=6246303.045 CLASS B ORDER 2 (ADOPTED FOR POSITION AND ORIENTATION) SSM 49315 E=334416.792 N=6246223.743 CLASS B ORDER 2 (ADOPTED FOR ORIENTATION)

AS SUPPLIED BY SCIMS DATED 20/09/2018 THE SUBJECT PROPERTY BOUNDARIES HAVE NOT BEEN SURVEYED.

THE BOUNDARIES SHOULD BE SURVEYED AND MARKED PRIOR TO THE COMMENCEMENT OF ANY CONSTRUCTION WORK

IMPROVEMENTS AND FEATURES SHOWN ON OR NEAR THE BOUNDARIES ARE

THE POSITION OF IMPROVEMENTS AND FEATURES HAVE BEEN LOCATED FOR PLOTTING PURPOSES ONLY

ABBREVIATIONS THAT ARE REFERENCED IN THE SYMBOLS TABLE SERVICES THAT ARE DENOTED "DBYD" HAVE BEEN PLOTTED FROM INFORMATION PROVIDED FROM 'DIAL BEFORE YOU DIG' AND HAVE NOT

VISIBLE SERVICES THAT HAVE BEEN SURVEYED ARE DENOTED BY

UNDERGROUND SERVICES THAT ARE OF A CRITICAL NATURE SHOULD BE EXPOSED AND THEIR POSITION SURVEYED

CONTOURS HAVE BEEN INTERPOLATED FROM SPOT HEIGHTS CONTOURS ARE AT 0.1 METRE INTERVALS (W) DENOTES EASEMENT FOR DRAINAGE (G293496)

BH DENOTES BORE HOLE BIT DENOTES BITUMEN CBW DENOTES CONCRETE BLOCK WALL CWSF DENOTES CYCLONE WIRE SECURITY FENCE EK DENOTES EMBANKMENT EM DENOTES ELECTRICAL MAIN EP DENOTES ELECTRICITY POWER POLE GM DENOTES GAS MAIN HY DENOTES HYDRANT INV DENOTES INVERT OF KERB LIP DENOTES LIP OF KERB LMK DENOTES LANE MARKING LP DENOTES LIGHT POLE LRW DENOTES LOW RETAINING WALL LCH DENOTES LOW CONCRETE HOB MH DENOTES MANHOLE MPF DENOTES METAL PANEL FENCE MW DENOTES MONITORING WELL OHC DENOTES OVERHEAD CABLES PT DENOTES PIT PU DENOTES PIT UNKNOWN SLDENOTES SIGN SMH DENTOES SEWER MANHOLE SV DENOTES STOP VALVE TC & TP DENOTES TELECOMMUNICATIONS PIT

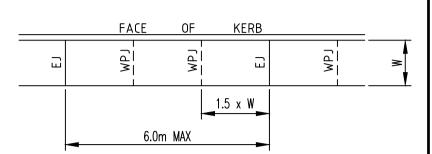
PENOTES THE APPROXIMATE SPREAD TRUNK LOCATION OF A TREE

TK DENOTES TOP OF KERB

WM DENOTES WATER MAIN

JOINTING NOTES

PEDESTRIAN PAVEMENT JOINTS


5. PEDESTRIAN PAVEMENT JOINT DETAIL.

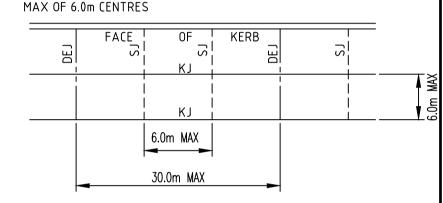
1. ALL PEDESTRIAN PAVEMENTS ARE TO BE JOINTED AS FOLLOWS. (U.N.O)

2. EXPANSION JOINTS ARE TO BE LOCATED WHERE POSSIBLE AT TANGENT POINTS OF CURVES AND ELSEWHERE AT MAX. 6.0m CENTRES.

3. WEAKENED PLANE JOINTS ARE TO BE LOCATED AT A MAX. SPACING OF 1.5 x WIDTH OF THE PAVEMENT.

4. WHERE POSSIBLE JOINTS SHOULD BE LOCATED TO MATCH KERBING AND OR ADJACENT PAVEMENT JOINTS.

NB: CHECK RELEVANT COUNCIL REQUIREMENTS IF IN PUBLIC ROAD. REFER TO LANDSCAPE ARCHITECT DRAWINGS FOR STANDARD DETAILS VEHICULAR PAVEMENT JOINTS


6. ALL VEHICULAR PAVEMENTS TO BE JOINTED AS FOLLOWS. (U.N.O)

6. ALL VEHICULAR PAVEMENTS TO BE JOINTED AS SHOWN ON DRAWINGS.

7. KEYED CONSTRUCTION JOINTS SHOULD GENERALLY BE LOCATED AT A

8. SAWN JOINTS SHOULD GENERALLY BE LOCATED AT A MAX OF 6.0m CENTRES WITH DOWELED EXPANSION JOINTS AT MAX 30.0m CENTRES

9. VEHICULAR PAVEMENT JOINT DETAIL.

BULK EARTHWORKS NOTES

1. ORIGIN OF LEVELS: REFER SURVEY NOTES

2. STRIP ALL TOPSOIL/ORGANIC MATERIAL FROM CONSTRUCTION AREA AND REMOVE FROM SITE OR STOCK PILE AS DIRECTED BY SUPERINTENDENT.

EXCAVATED MATERIAL TO BE USED AS STRUCTURAL FILL PROVIDED THE PLACEMENT MOISTURE CONTENT OF THE MATERIAL IS +/- 2% OF THE OPTIMUM MOISTURE CONTENT

4. COMPACT FILL AREAS AND SUBGRADE TO NOT LESS THAN:

LOCATION STANDARD DRY DENSITY (AS 1289 E 5.1.1.) UNDER BUILDING SLABS ON GROUND 98% UNDER ROADS AND CARPARKS LANDSCAPED AREAS UNLESS NOTED OTHERWISE 98%

5. FOR NON COHESIVE MATERIAL, COMPACT TO 75% DENSITY INDEX.

. BEFORE PLACING FILL, PROOF ROLL EXPOSED SUBGRADE WITH AN 8 TONNE (MIN) DEADWEIGHT SMOOTH DRUM VIBRATORY ROLLER TO DETECT THEN REMOVE SOFT SPOTS (AREAS WITH MORE THAN 2mm MOVEMENT UNDER ROLLER).

FREQUENCY OF COMPACTION TESTING SHALL BE NOT LESS THAN :-(A) 1 TEST PER 200m³ OF FILL PLACED PER 300 LAYER OF FILL. (B) 3 TESTS PER VISIT (C) 1 TEST PER 1000m² OF EXPOSED SUBGRADE

TESTING SHALL BE "LEVEL 1" TESTING IN ACCORDANCE WITH AS 3798

8. FILLING TO BE PLACED AND COMPACTED IN MAXIMUM 150mm LAYERS 9. NO FILLING SHALL TAKE PLACE TO EXPOSE SUBGRADE UNTIL THE AREA HAS BEEN PROOF ROLLED IN THE PRESENCE OF AT & L

AND APPROVAL GIVEN IN WRITING THAT FILLING CAN PROCEED.

City Services City of Sydney PUBLIC DOMAIN PLAN APPROVAL **SECTION 138 ROADS ACT 1993 APPROVAL Drawings approved for construction, pursuant to:** DA No.: D/2019/976 Condition No.: 66,121,132 and City of Sydney Letter Dated: 25/8/21

CONCRETE NOTES

1. ALL WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH AS 3600 CURRENT EDITION WITH AMENDMENTS EXCEPT WHERE VARIED BY THE CONTRACT DOCUMENTS.

2. CONCRETE QUALITY ALL REQUIREMENTS OF THE CURRENT ACSE CONCRETE SPECIFICATION DOCUMENT 1 SHALL APPLY TO THE FORMWORK, REINFORCEMENT AND CONCRETE UNLESS NOTED OTHERWISE.

ELEMENT	AS 3600 F'c MPa	SPECIFIED	NOMINAL
	AT 28 DAYS	SLUMP	AGG. SIZE
VEHICULAR BASE KERBS, (PATHS, AND PITS) @32 MPa	32 25	60 80	20 20

- CEMENT TYPE SHALL BE (ACSE SPECIFICATION) TYPE SL
- PROJECT CONTROL TESTING SHALL BE CARRIED OUT IN ACCORDANCE WITH AS 1379.

3. NO ADMIXTURES SHALL BE USED IN CONCRETE UNLESS APPROVED IN WRITING BY AT & L.

4. CLEAR CONCRETE COVER TO ALL REINFORCEMENT FOR DURABILITY SHALL BE 40mm TOP AND 70mm FOR EXTERNAL EDGES UNLESS NOTED OTHERWISE.

5. ALL REINFORCEMENT SHALL BE FIRMLY SUPPORTED ON MILD STEEL PLASTIC TIPPED CHAIRS, PLASTIC CHAIRS OR CONCRETE CHAIRS AT NOT GREATER THAN 1m CENTRES BOTH WAYS. BARS SHALL BE TIED AT ALTERNATE INTERSECTIONS.

6. THE FINISHED CONCRETE SHALL BE A DENSE HOMOGENEOUS MASS, COMPLETELY FILLING THE FORMWORK, THOROUGHLY EMBEDDING THE REINFORCEMENT AND FREE OF STONE POCKETS. ALL CONCRETE INCLUDING SLABS ON GROUND AND FOOTINGS SHALL BE COMPACTED AND CURED IN ACCORDANCE WITH R.T.A. SPECIFICATION R83.

7. REINFORCEMENT SYMBOLS: N DENOTES GRADE 450 N BARS TO AS 1302 GRADE N

R DENOTES 230 R HOT ROLLED PLAIN BARS TO AS 1302 SL DENOTES HARD-DRAWN WIRE REINFORCING FABRIC TO AS 1304

NUMBER OF BARS IN GROUP __ BAR GRADE AND TYPE 17 N 20 250

NOMINAL BAR SIZE IN mm — SPACING IN mm THE FIGURE FOLLOWING THE FABRIC SYMBOL SL IS THE REFERANCE NUMBER FOR FABRIC TO AS 1304

8. FABRIC SHALL BE LAPPED IN ACCORDANCE WITH THE FOLLOWING DETAIL:

DETAILS AND SPECIFICATIONS

1. ALL WORKS TO BE UNDERTAKEN IN ACCORDANCE WITH CITY OF SYDNEY TECHNICAL SPECIFICATIONS

2. WHERE CONFLICT EXISTS BETWEEN AT&L DETAILS AND COUNCIL. THE CITY OF SYDNEY STANDARD DRAWINGS TAKE PRECEDENCE.

EXISTING UNDERGROUND SERVICES

THE LOCATIONS OF UNDERGROUND SERVICES SHOWN IN THIS SET OF DRAWINGS HAVE BEEN PLOTTED FROM SURVEY INFORMATION AND SERVICE AUTHORITY INFORMATION. THE SERVICE INFORMATION HAS BEEN PREPARED ONLY TO SHOW THE APPROXIMATE POSITIONS OF ANY KNOWN SERVICES AND MAY NOT BE AS CONSTRUCTED OR ACCURATE.

AT & L CAN NOT GUARANTEE THAT THE SERVICES INFORMATION SHOWN ON THESE DRAWINGS ACCURATELY INDICATES THE PRESENCE OR ABSENCE OF SERVICES OR THEIR LOCATION AND WILL ACCEPT NO LIABILITY FOR INACCURACIES IN THE SERVICES INFORMATION SHOWN FROM ANY CAUSE WHATSOEVER.

CONTRACTORS SHALL TAKE DUE CARE WHEN EXCAVATING ONSITE INCLUDING HAND EXCAVATION WHERE NECESSARY.

CONTRACTORS ARE TO CONTACT THE RELEVANT SERVICE AUTHORITY PRIOR TO COMMENCEMENT OF EXCAVATION WORKS.

CONTRACTORS ARE TO UNDERTAKE A SERVICES SEARCH, PRIOR TO COMMENCEMENT OF WORKS ON SITE. SEARCH RESULTS ARE TO BE KEPT ON SITE AT ALL TIMES.

LEGEND **EXISTING EXISTING BOUNDARY** +213.00

EXISTING BOUNDARY TO BE REMOVED SURFACE LEVEL CONTOUR FENCE

EXISTING TREE GAS TELSTRA OPTIC FIBRE

ELECTRICITY (U'GROUND) WATER STORMWATER

SEWER

PROPOSED

— G —

___ T ___

— OP —

— E —

— W —

—— SW ——

— S —

<u>IKO</u>

PROPOSED BOUNDARY PROPOSED CONTOUR

PROPOSED SURFACE LEVEL ● F213.00 KERB AND GUTTER

KERB ONLY FLUSH KERB

STORMWATER PIT WITH GRATE AND LINE

INTEGRAL KERB ONLY

KERB INLET PIT JUNCTION PIT WITH INFILL

SURFACE INLET PIT SUBSOIL DRAINAGE LINE

FLUSHING POINT

> INTERMEDIATE RISER RETAINING WALL

KERBING NOTES

1. ALL CONCRETE TO HAVE A MINIMUM COMPRESSIVE STRENGTH 0F25 MPa U.N.O IN REINFORCED CONCRETE NOTES

2. ALL KERBS, GUTTERS, DISH DRAINS AND CROSSINGS TO BE CONSTRUCTED ON 100mm GRANULAR BASECOURSE COMPACTED TO MINIMUM 95% MODIFIED DRY DENSITY (AS 1289 5.2.1).

3. EXPANSION JOINTS (E.J) TO BE FORMED FROM 10mm COMPRESSIBLE CORK FILLER BOARD FOR THE FULL DEPTH OF THE SECTION AND CUT TO PROFILE. EXPANSION JOINTS TO BE LOCATED AT DRAINAGE PITS, ON TANGENT POINTS OF CURVES AND ELSEWHERE AT MAX 12m CENTRES EXCEPT FOR INTEGRAL KERBS WHERE THE EXPANSION JOINTS ARE TO MATCH THE JOINT LOCATIONS IN THE SLABS.

4. WEAKENED PLANE JOINTS TO BE MIN 3mm WIDE AND LOCATED AT 3m CENTRES EXCEPT FOR INTEGRAL KERBS WHERE THE WEAKENED PLANE JOINTS ARE TO MATCH THE JOINT LOCATIONS IN THE SLABS.

5. BROOMED FINISH TO ALL RAMPED AND VEHICULAR CROSSINGS. ALL OTHER KERBING OR DISH DRAINS TO BE STEEL FLOAT FINISHED.

6. IN THE REPLACEMENT OF KERB AND GUTTER :-EXISTING ROAD PAVEMENT IS TO BE SAWCUT 900mm U.N.O FROM THE LIP OF GUTTER, UPON COMPLETION OF THE NEW KERB AND GUTTER NEW BASECOURSE AND SURFACE TO BE LAID 600mm WIDE U.N.O.

EXISTING ALLOTMENT DRAINAGE PIPES ARE TO BE BUILT INTO THE NEW KERB AND GUTTER WITH 100mm DIA HOLE.

AUTHORITY PLANS

EXISTING KERB AND GUTTER IS TO BE COMPLETELY REMOVED WHERE NEW KERB AND GUTTER IS SHOWN.

CONTRACTOR SHALL CALL; DIAL BEFORE YOU DIG 1100 PRIOR TO COMMENCEMENT OF WORK TO OBTAIN ALL CURRENT SERVICE

EROSION AND SEDIMENT CONTROL

NOTES

GENERAL INSTRUCTIONS

1. THE SITE SUPERINTENDENT/ENGINEER WILL ENSURE THAT ALL SOIL AND WATER MANAGEMENT WORKS ARE LOCATED AS DOCUMENTED.

2. ALL WORK SHALL BE GENERALLY CARRIED OUT IN ACCORDANCE WITH a. LOCAL AUTHORITY REQUIREMENTS b. EPA REQUIREMENTS

c. NSW DEPARTMENT OF HOUSING MANUAL "MANAGING URBAN STORMWATER, SOILS AND CONSTRUCTION", 4th EDITION, MARCH

3. MAINTAIN THE EROSION CONTROL DEVICES TO THE SATISFACTION OF THE SUPERINTENDENT AND THE LOCAL AUTHORITY.

4. WHEN STORMWATER PITS ARE CONSTRUCTED. PREVENT SITE RUNOFF ENTERING UNLESS SEDIMENT FENCES ARE ERECTED AROUND PITS.

5. CONTRACTOR IS TO ENSURE ALL EROSION & SEDIMENT CONTROL DEVICES ARE MAINTAINED IN GOOD WORKING ORDER AND OPERATE EFFECTIVELY, REPAIRS AND OR MAINTENANCE SHALL BE UNDERTAKEN AS REQUIRED, PARTICULARLY FOLLOWING STORM EVENTS.

LAND DISTURBANCE

6. WHERE PRACTICAL, THE SOIL EROSION HAZARD ON THE SITE WILL BE KEPT AS LOW AS POSSIBLE. TO THIS END, WORKS SHOULD BE UNDERTAKEN IN THE FOLLOWING SEQUENCE:

(A) INSTALL A SEDIMENT FENCE ALONG THE BOUNDARIES AS SHOWN ON PLAN. REFER DETAIL.

(B) CONSTRUCT STABILISED CONSTRUCTION ENTRANCE TO LOCATION AS DETERMINED BY SUPERINTENDENT/ENGINEER. REFER DETAIL.

(C) INSTALL SEDIMENT TRAPS AS SHOWN ON PLAN.

(D) UNDERTAKE SITE DEVELOPMENT WORKS IN ACCORDANCE WITH THE ENGINEERING PLANS. WHERE POSSIBLE, PHASE DEVELOPMENT SO THAT LAND DISTURBANCE IS CONFINED TO AREAS OF WORKABLE SIZE.

EROSION CONTROI

7. DURING WINDY WEATHER, LARGE, UNPROTECTED AREAS WILL BE KEPT MOIST (NOT WET) BY SPRINKLING WITH WATER TO KEEP DUST UNDER

8. FINAL SITE LANDSCAPING WILL BE UNDERTAKEN AS SOON AS POSSIBLE AND WITHIN 20 WORKING DAYS FROM COMPLETION OF CONSTRUCTION ACTIVITIES.

SEDIMENT CONTROL

9. STOCKPILES WILL NOT BE LOCATED WITHIN 2 METRES OF HAZARD AREAS, INCLUDING LIKELY AREAS OF CONCENTRATED OR HIGH VELOCITY FLOWS SUCH AS WATERWAYS. WHERE THEY ARE BETWEEN 2 AND 5 METRES FROM SUCH AREAS, SPECIAL SEDIMENT CONTROL MEASURES SHOULD BE TAKEN TO MINIMISE POSSIBLE POLLUTION TO DOWNSLOPE WATERS, E.G. THROUGH INSTALLATION OF SEDIMENT

FENCING. 10. ANY SAND USED IN THE CONCRETE CURING PROCESS (SPREAD OVER THE SURFACE) WILL BE REMOVED AS SOON AS POSSIBLE AND WITHIN

10 WORKING DAYS FROM PLACEMENT. 11. WATER WILL BE PREVENTED FROM ENTERING THE PERMANENT DRAINAGE SYSTEM UNLESS IT IS RELATIVELY SEDIMENT FREE, I.E. THE CATCHMENT AREA HAS BEEN PERMANENTLY LANDSCAPED AND/OR ANY LIKELY SEDIMENT HAS BEEN FILTERED THROUGH AN APPROVED

12. TEMPORARY SOIL AND WATER MANAGEMENT STRUCTURES WILL BE REMOVED ONLY AFTER THE LANDS THEY ARE PROTECTING ARE REHABILITATED.

OTHER MATTERS

STRUCTURE.

13. ACCEPTABLE RECEPTORS WILL BE PROVIDED FOR CONCRETE AND MORTAR SLURRIES, PAINTS, ACID WASHINGS, LIGHT-WEIGHT WASTE MATERIALS AND LITTER.

14. ANY EXISTING TREES WHICH FORM PART OF THE FINAL LANDSCAPING PLAN WILL BE PROTECTED FROM CONSTRUCTION ACTIVITIES BY:

(A) PROTECTING THEM WITH BARRIER FENCING OR SIMILAR MATERIALS INSTALLED OUTSIDE THE DRIP LINE

(B) ENSURING THAT NOTHING IS NAILED TO THEM

(C) PROHIBITING PAVING, GRADING, SEDIMENT WASH OR PLACING OF STOCKPILES WITHIN THE DRIP LINE EXCEPT UNDER THE FOLLOWING CONDITIONS.

(I) ENCROACHMENT ONLY OCCURS ON ONE SIDE AND NO CLOSER

TO THE TRUNK THAN EITHER 1.5 METRES OR HALF THE

DISTANCE BETWEEN THE OUTER EDGE OF THE DRIP LINE AND THE TRUNK, WHICH EVER IS THE GREATER (II) A DRAINAGE SYSTEM THAT ALLOWS AIR AND WATER TO CIRCULATE THROUGH THE ROOT ZONE (E.G. A GRAVEL

BED) IS PLACED UNDER ALL FILL LAYERS OF MORE THAN

300 MILLIMETRES DEPTH (III) CARE IS TAKEN NOT TO CUT ROOTS UNNECESSARILY NOR TO COMPACT THE SOIL AROUND THEM.

Client THIS DRAWING CANNOT BE COPIED OR REPRODUCED IN ANY FORM OR USED FOR ANY OTHER PURPOSE OTHER THAN

THAT ORIGINALLY INTENDED

WITHOUT THE WRITTEN

PERMISSION OF AT&L

KARIMBLA CONSTRUCTION SERVICES (NSW) PTY LIMITED

> Level 11, 528 Kent Street, Sydney NSW 2000 Tel: (02) 9287 2888 Fax: (02) 9287 2777 Email: info@design.meriton.com.au Internet: http://www.meriton.com.au

Scales Project ADC NTS Designed GJ Checked MGA GJ Height Approved AHD Datum Title

94-104 EPSOM ROAD ZETLAND

NOTES AND LEGENDS

info@atl.net.au FOR APPROVAL

Civil Engineers and Project Managers

NOT FOR CONSTRUCTION roject - Drawing No. 18-557-C102

Issue

Level 7, 153 Walker Street

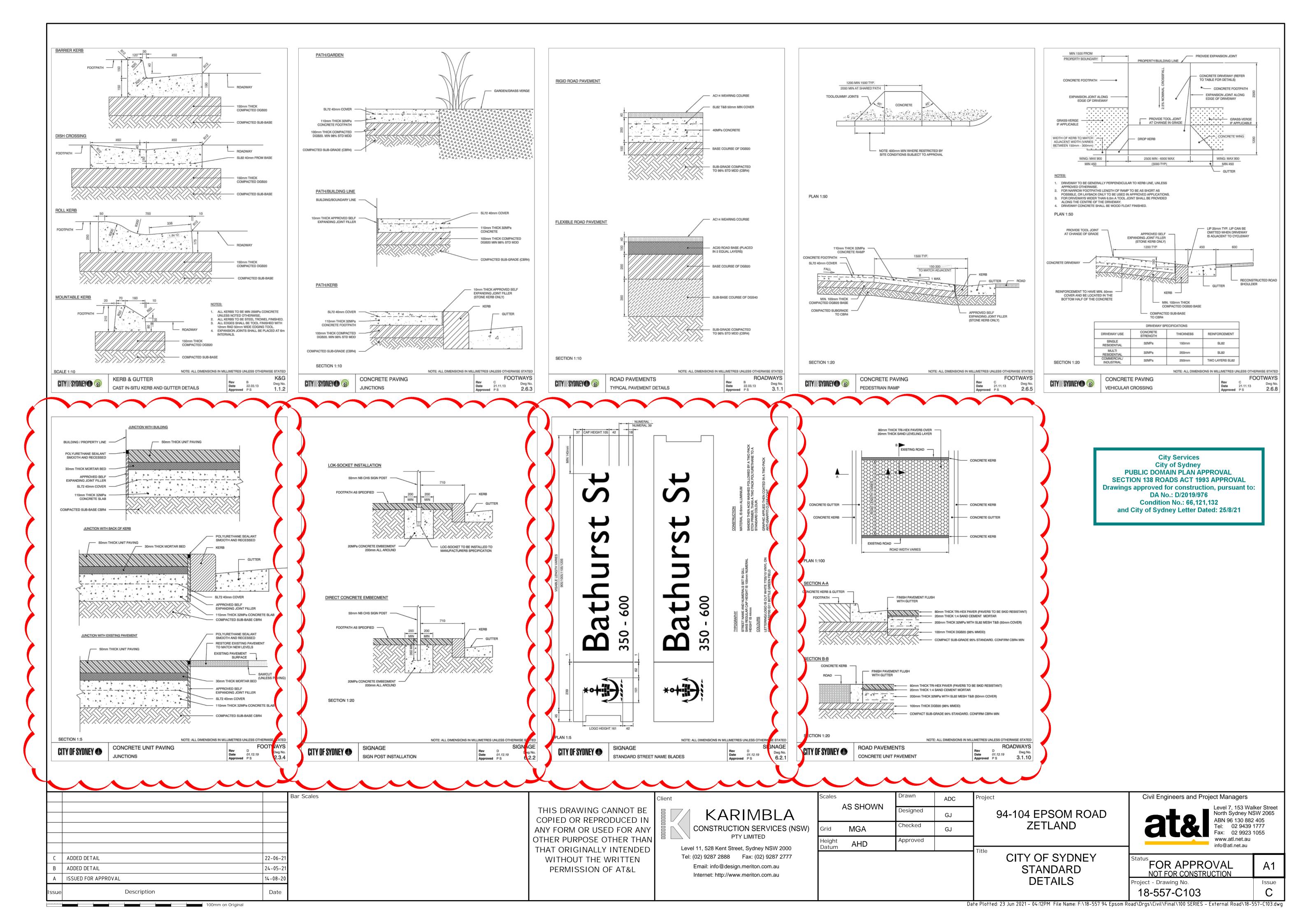
North Sydney NSW 2065

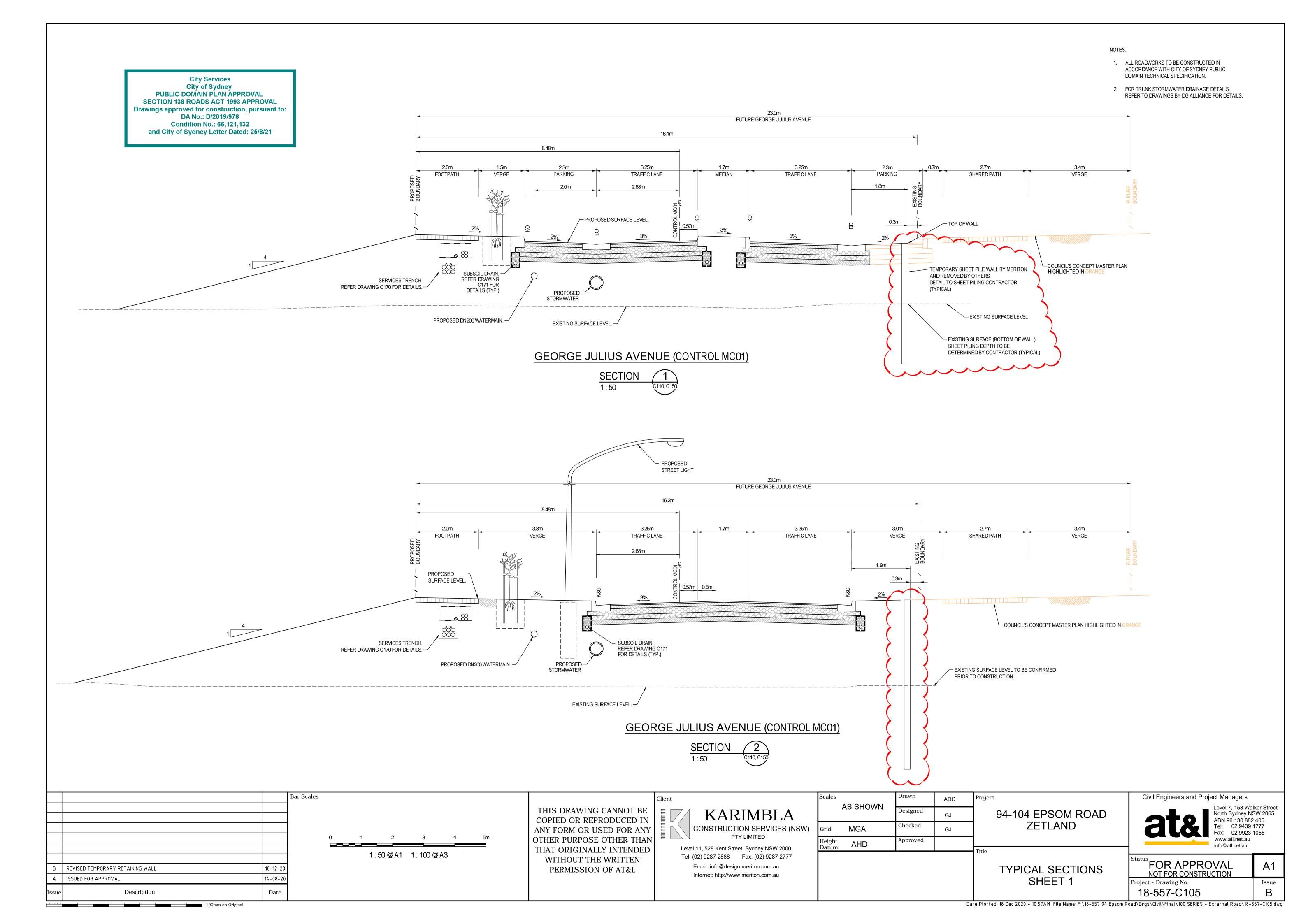
ABN 96 130 882 405

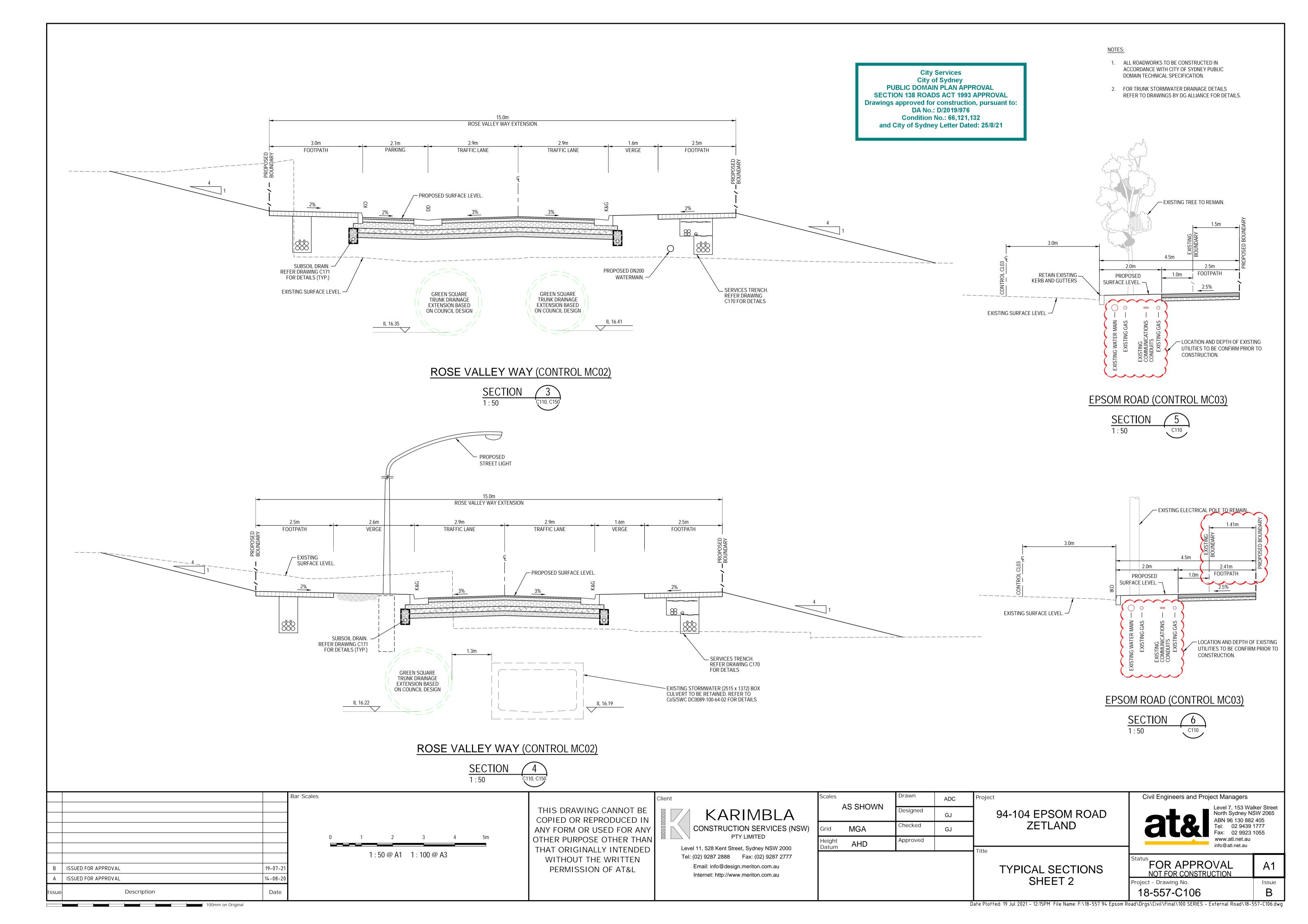
Tel: 02 9439 1777

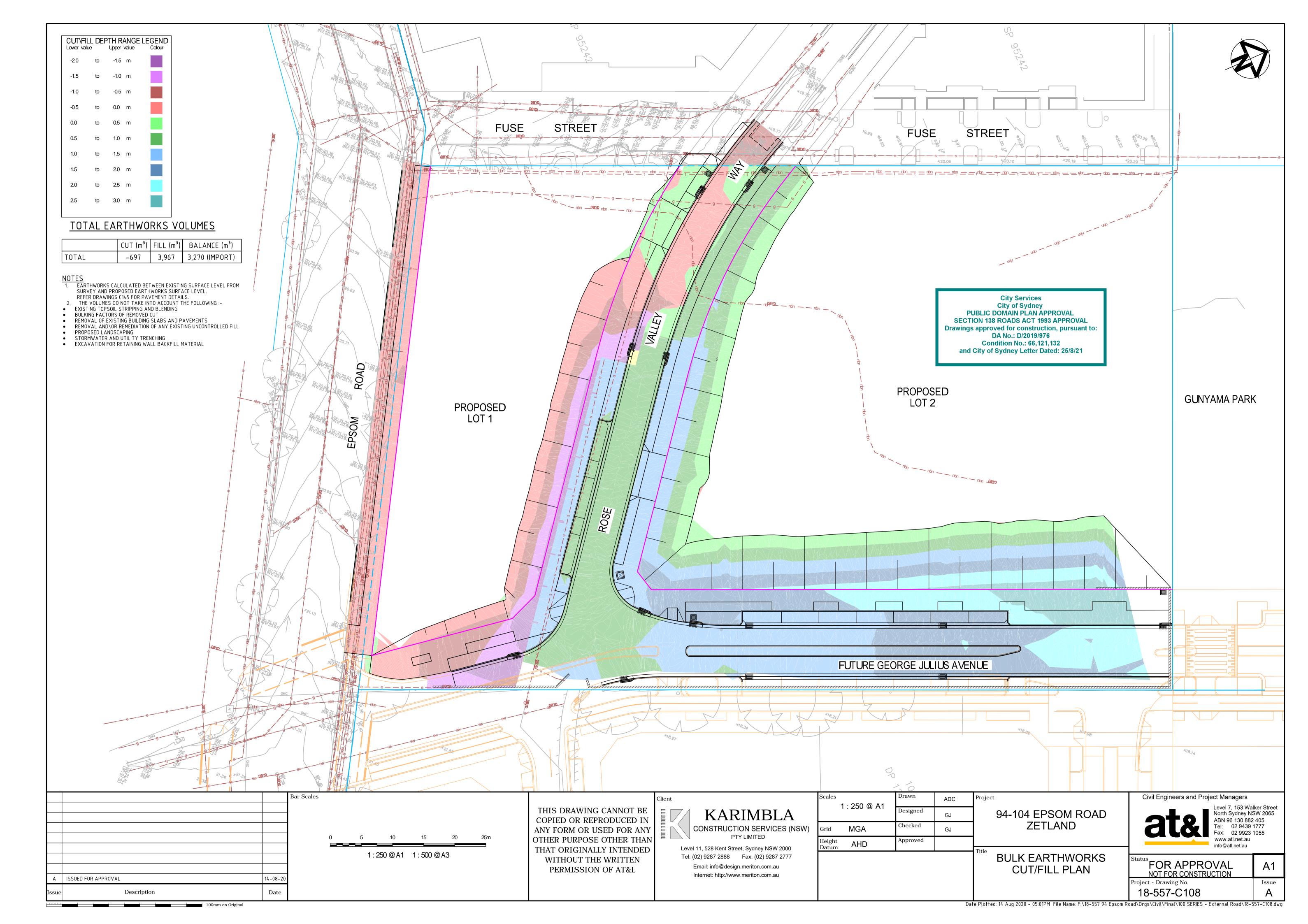
Fax: 02 9923 1055

www.atl.net.au

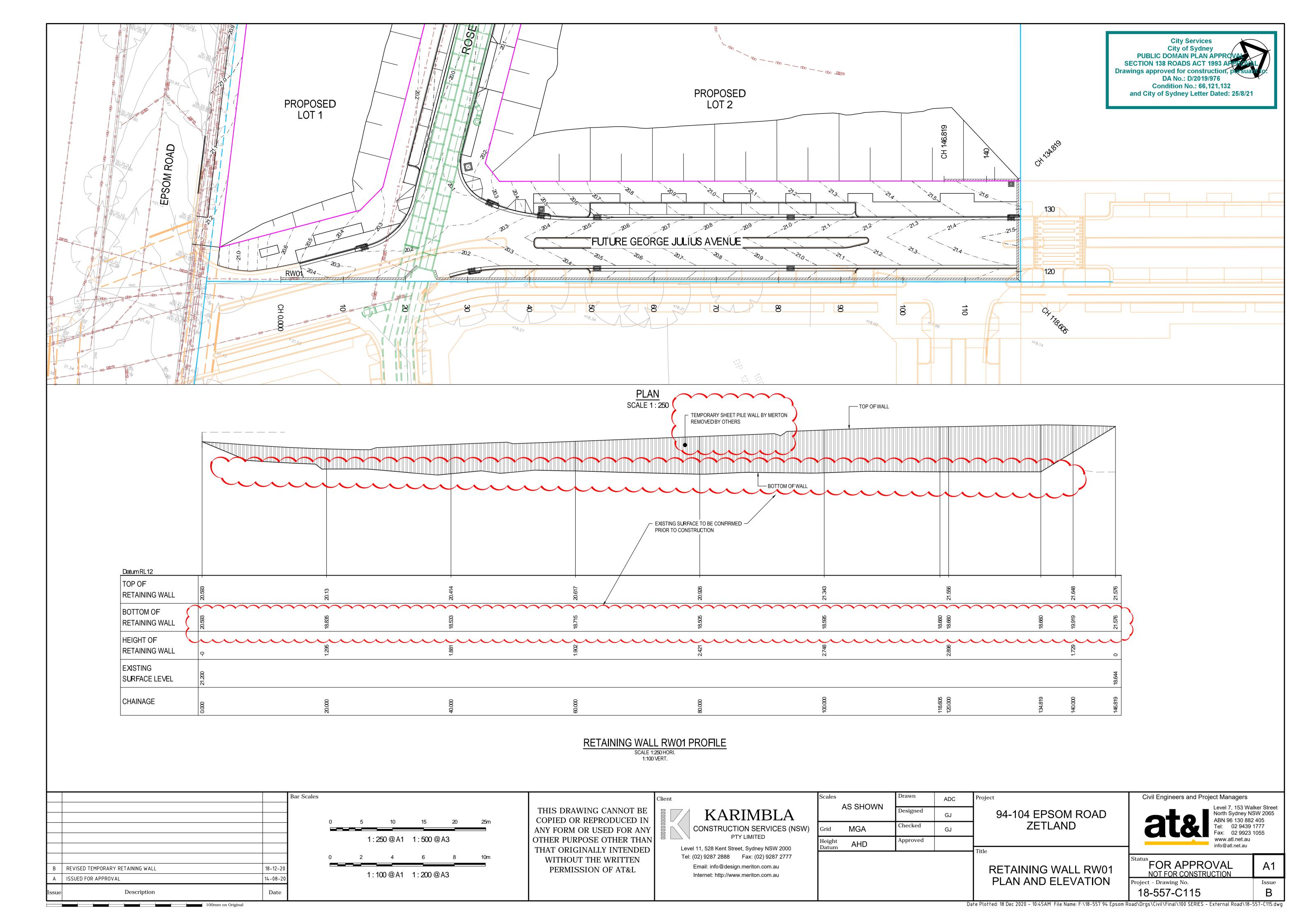

Date Plotted: 14 Aug 2020 – 05:01PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES – External Road\18-557-C102.dwg

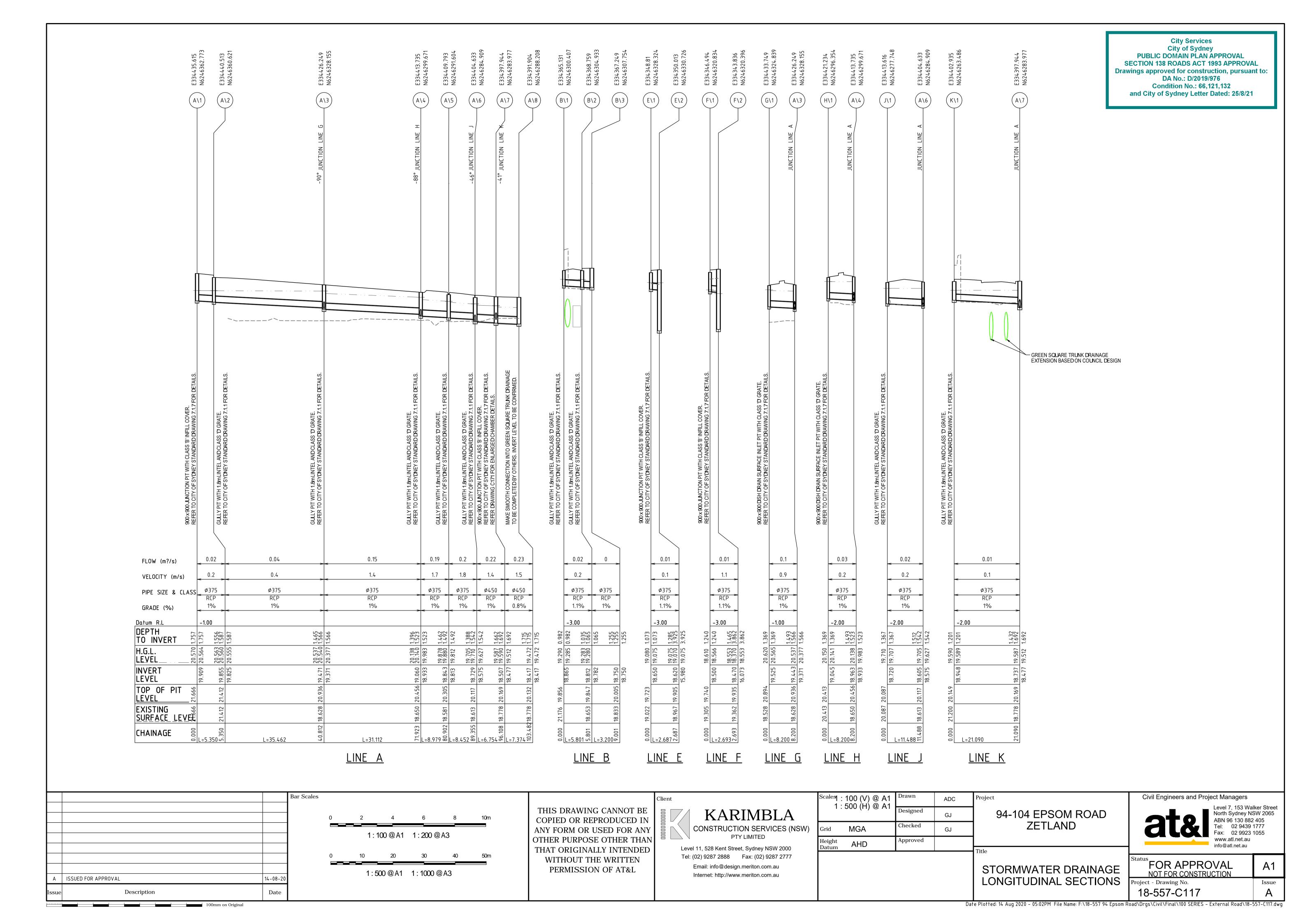

100mm on Original

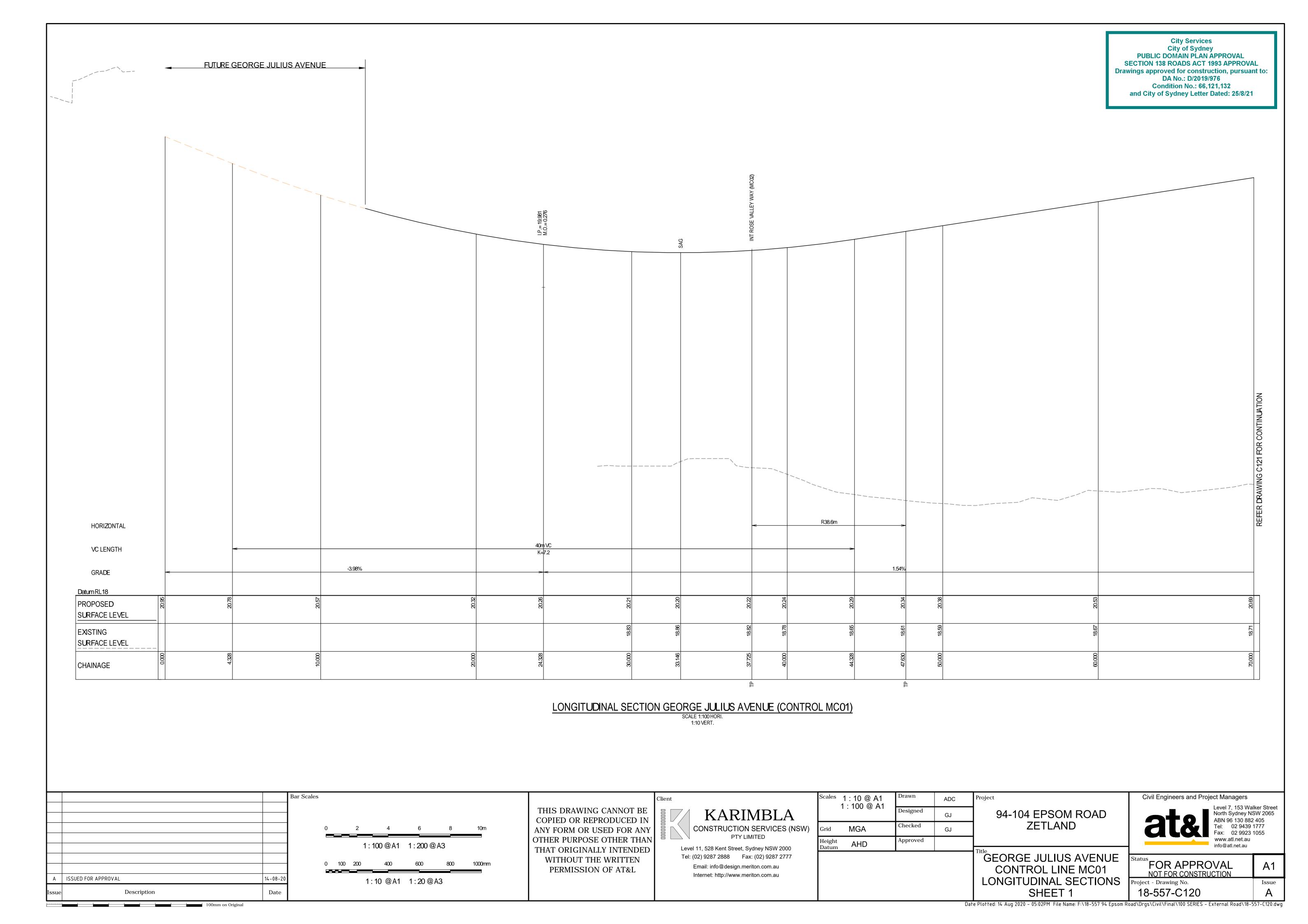

14-08-2

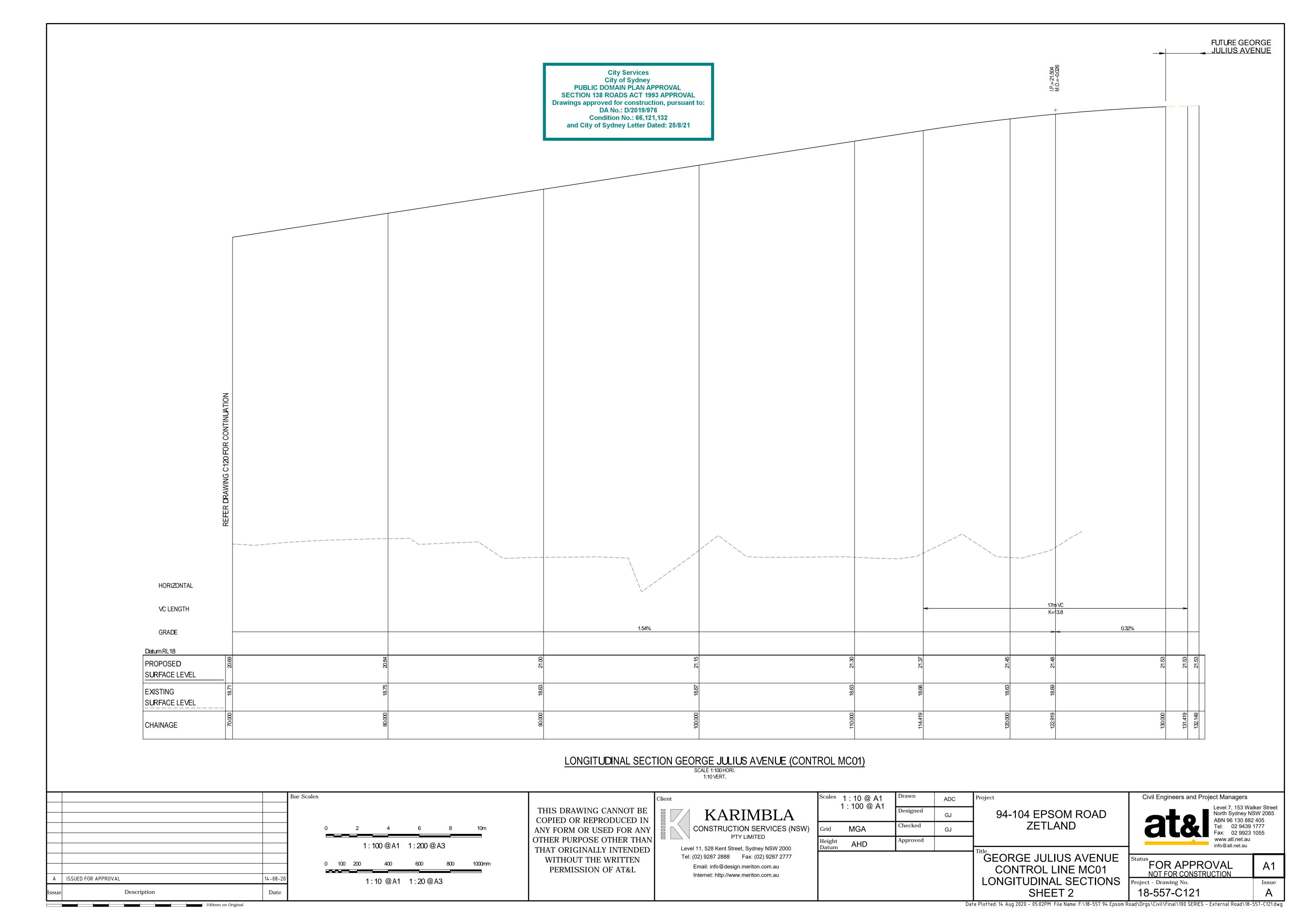

Date

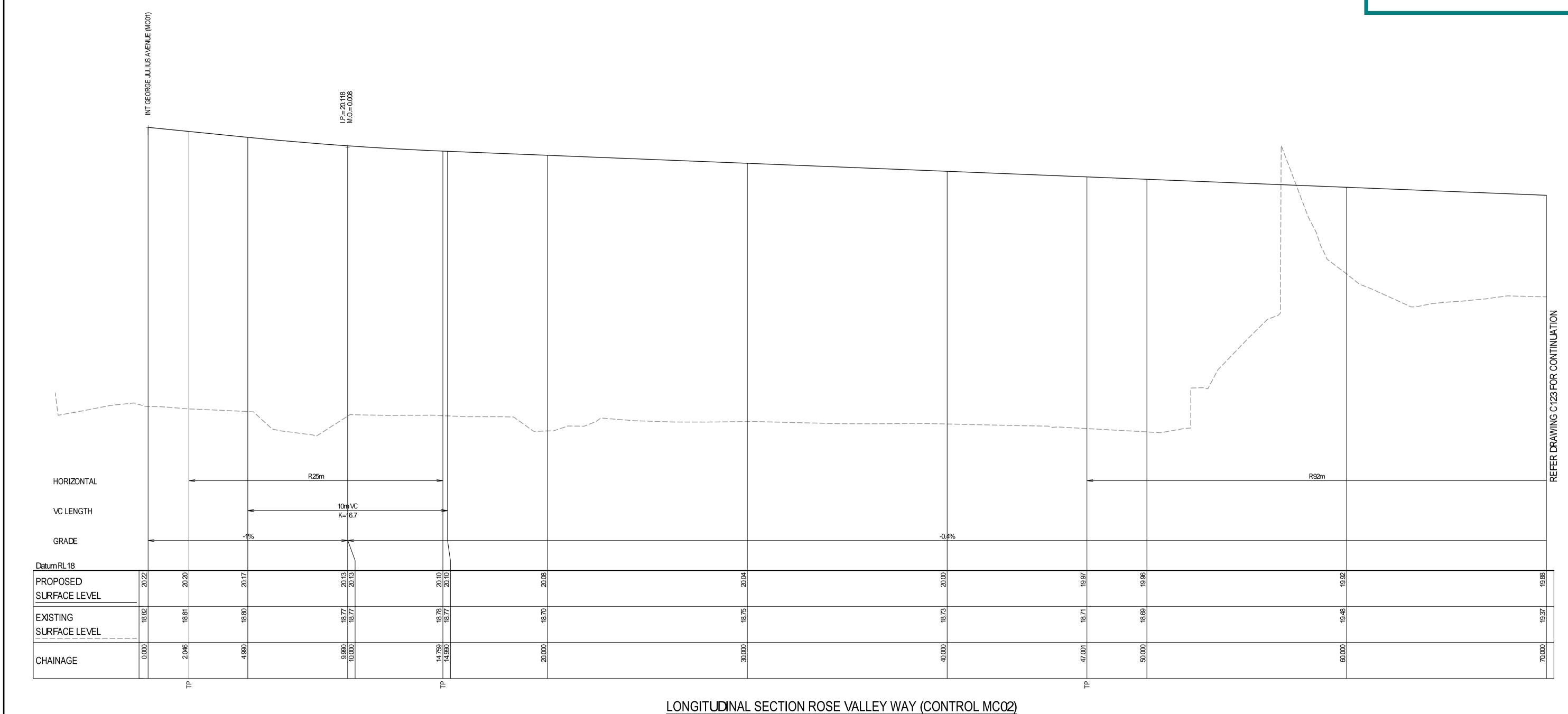

Bar Scales













LONGITUDINAL SECTION ROSE VALLEY WAY (CONTROL MC02)

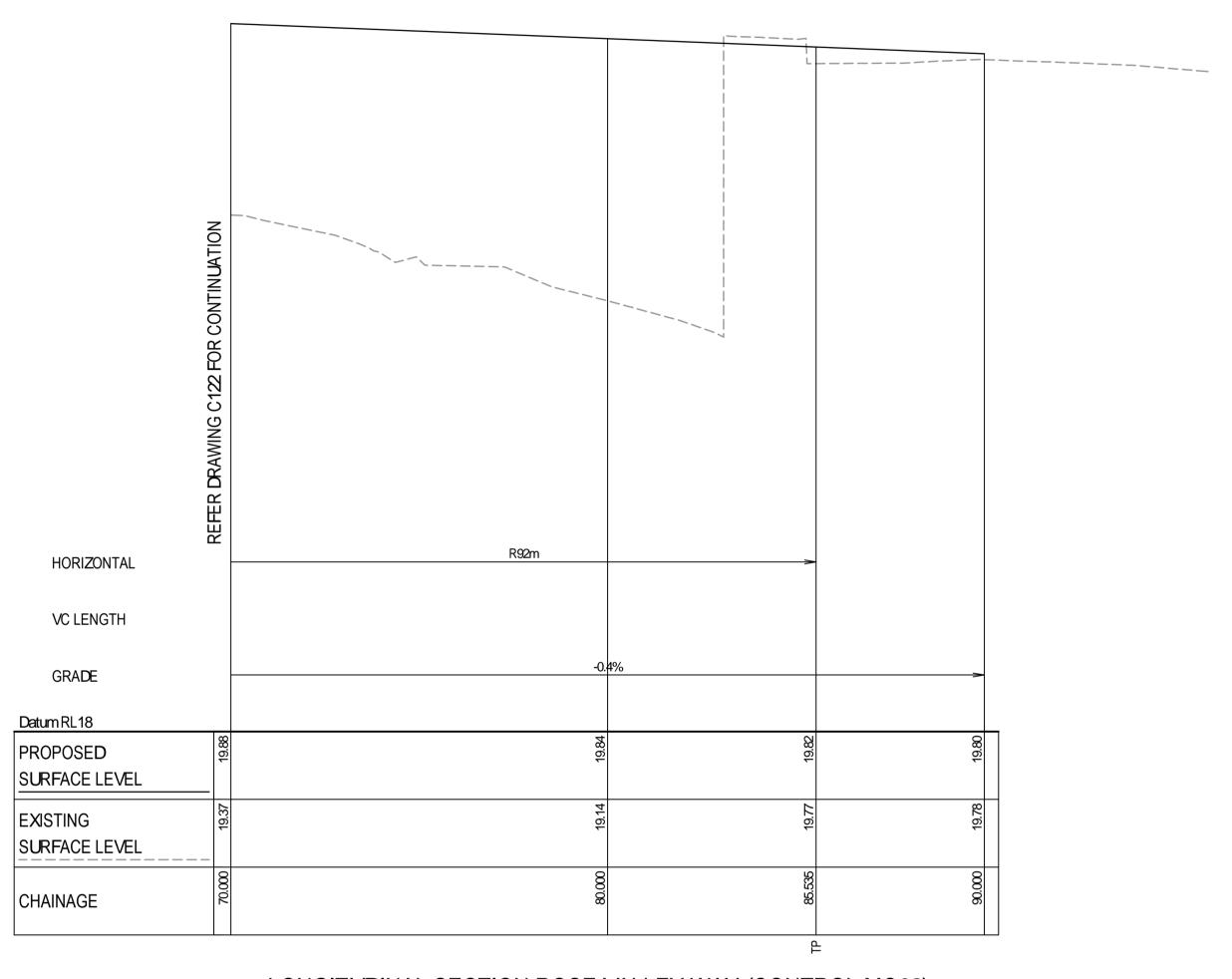
SCALE 1:100 HORI.
1:10 VERT.

THIS DRAWING CANNOT BE
COPIED OR REPRODUCED IN
ANY FORM OR USED FOR ANY
OTHER PURPOSE OTHER THAN
THAT ORIGINALLY INTENDED
WITHOUT THE WRITTEN
PERMISSION OF AT&L

Level 11, 528 Kent Street, Sydney NSW 2000
Tel: (02) 9287 2888 Fax: (02) 9287 2777
Email: info@design.meriton.com.au
Internet: http://www.meriton.com.au

	1 : 10 @ A1 : 100 @ A1	Drawn	ADC	Project
	. 100 @ A1	Designed	GJ	94-104 EPSOM ROAD
Grid	MGA	Checked	GJ	ZETLAND
Height Datum	AHD	Approved		

ROSE VALLEY WAY
CONTROL LINE MC02
LONGITUDINAL SECTIONS


SHEET 1

Date Plotted: 14 Aug 2020 - 05:02PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES - External Road\18-557-C122.dwg

Civil Engineers and Project Managers

Level 7, 153 Walker Street
North Sydney NSW 2065
ABN 96 130 882 405
Tel: 02 9439 1777
Fax: 02 9923 1055
www.atl.net.au

FOR APPROVAL NOT FOR CONSTRUCTION	A1
Project - Drawing No.	Issue
18-557-C122	Α

LONGITUDINAL SECTION ROSE VALLEY WAY (CONTROL MCO2)

SCALE 1:100 HORI.
1:10 VERT.

Client

			Bar Scales							
				0		2	4	6	8	10m
						1.	100 @ \ 1	1 . 200 (ش ۸ ی	
						١.	100 @ A1	1.200 (y A3	
				0	100	200	400	600	800	1000m
					_					
Α	ISSUED FOR APPROVAL	14-08-20]			1:	:10 @A1	1:20@	A3	
Issue	Description	Date								

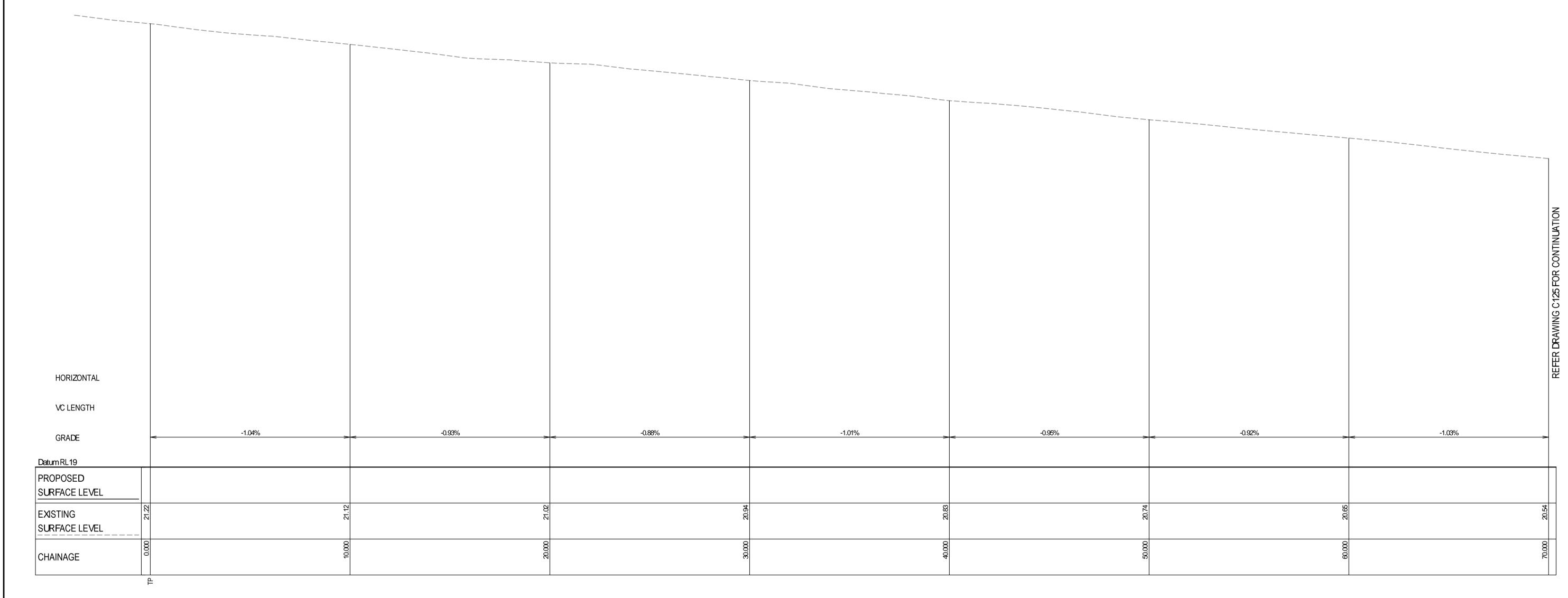
100mm on Original

THIS DRAWING CANNOT BE COPIED OR REPRODUCED IN ANY FORM OR USED FOR ANY OTHER PURPOSE OTHER THAN THAT ORIGINALLY INTENDED WITHOUT THE WRITTEN PERMISSION OF AT&L

Tel: (02) 9287 2888 Fax: (02) 9287 2777 Email: info@design.meriton.com.au Internet: http://www.meriton.com.au

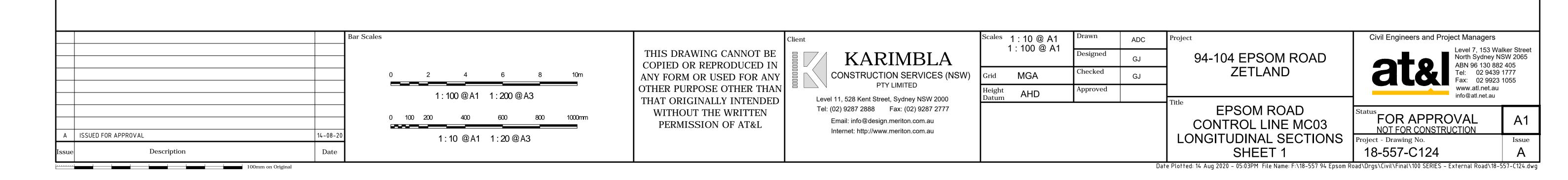
Scales	1 : 10 @ A1 1 : 100 @ A1	Drawn	ADC	Projec
	1.100 @ A1	Designed	GJ	
Grid	MGA	Checked	GJ	
Height	AHD	Approved		
Datum	, <u>=</u>			Titlo

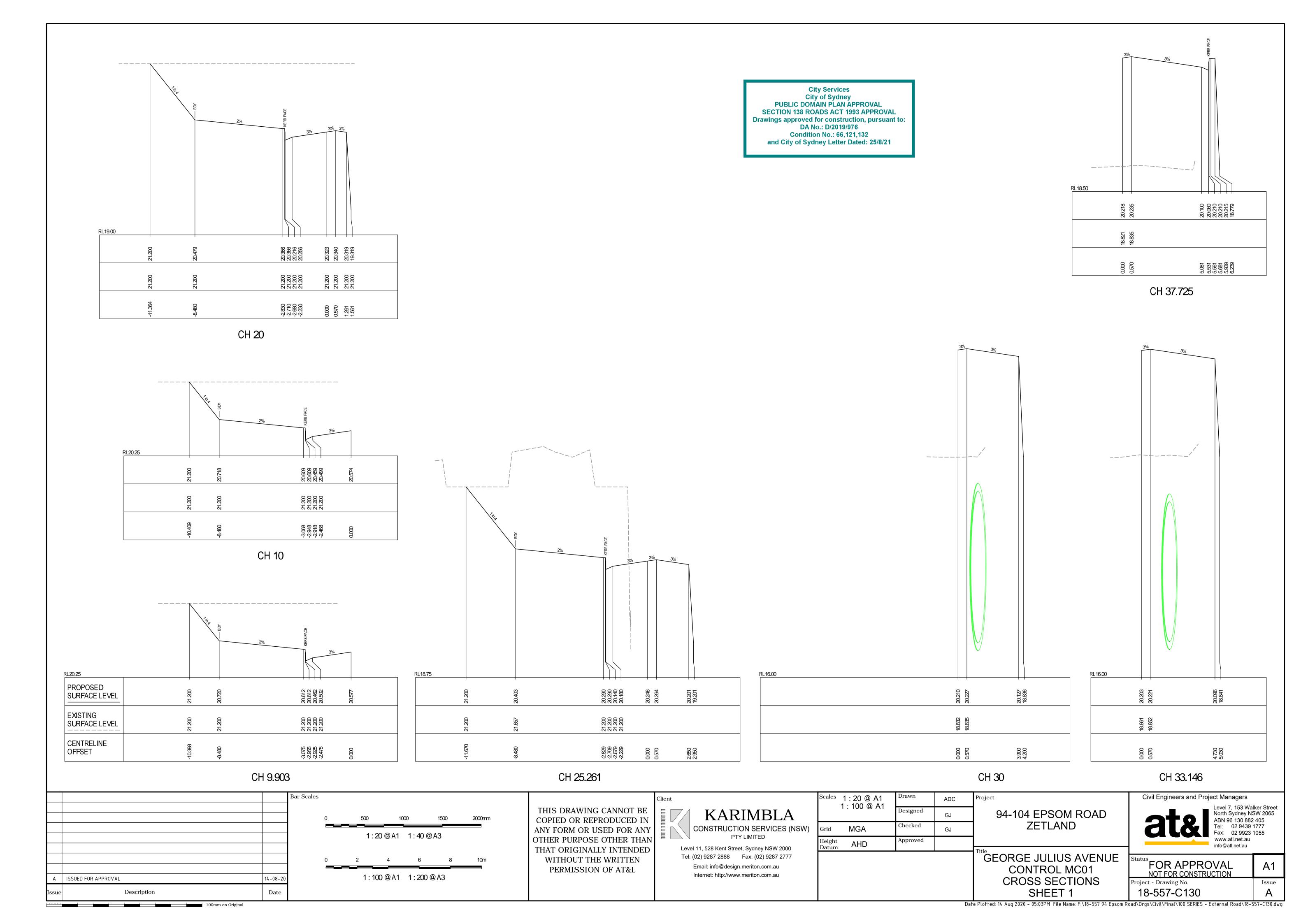
94-104 EPSOM ROAD ZETLAND

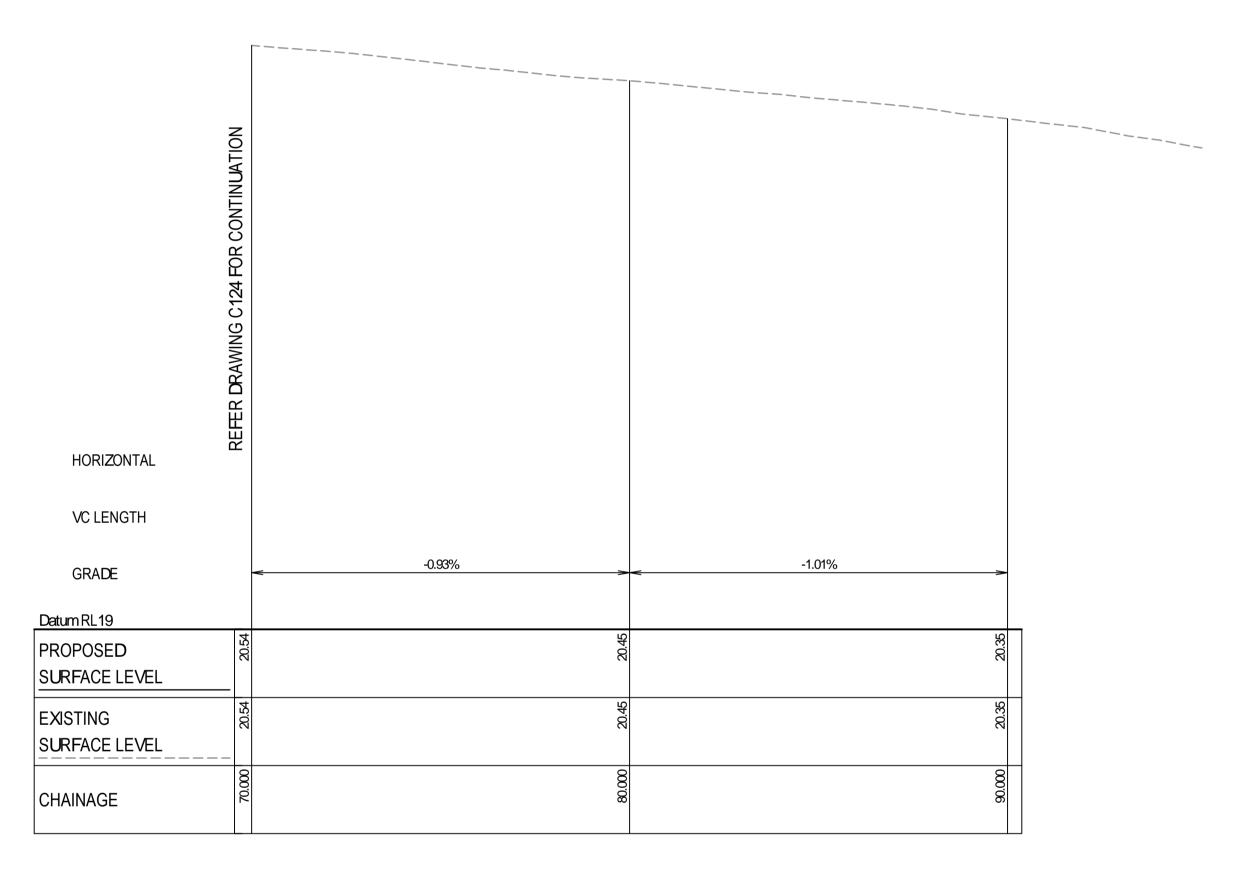

ROSE VALLEY WAY CONTROL LINE MC02 LONGITUDINAL SECTIONS Project - Drawing No. SHEET 2

Civil Engineers and Project Managers Level 7, 153 Walker Street North Sydney NSW 2065 ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055 www.atl.net.au

info@atl.net.au FOR APPROVAL NOT FOR CONSTRUCTION **A**1 Issue


18-557-C123


Date Plotted: 14 Aug 2020 - 05:02PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES - External Road\18-557-C123.dwg



LONGITUDINAL SECTION EPSOM ROAD (CONTROL MC03)

SCALE 1:100 HORI.
1:10 VERT.

LONGITUDINAL SECTION EPSOM ROAD (CONTROL MC03)

SCALE 1:100 HORI.
1:10 VERT.

THIS DRAWING CANNOT BE
COPIED OR REPRODUCED IN
ANY FORM OR USED FOR ANY
OTHER PURPOSE OTHER THAN
THAT ORIGINALLY INTENDED
WITHOUT THE WRITTEN
PERMISSION OF AT&L

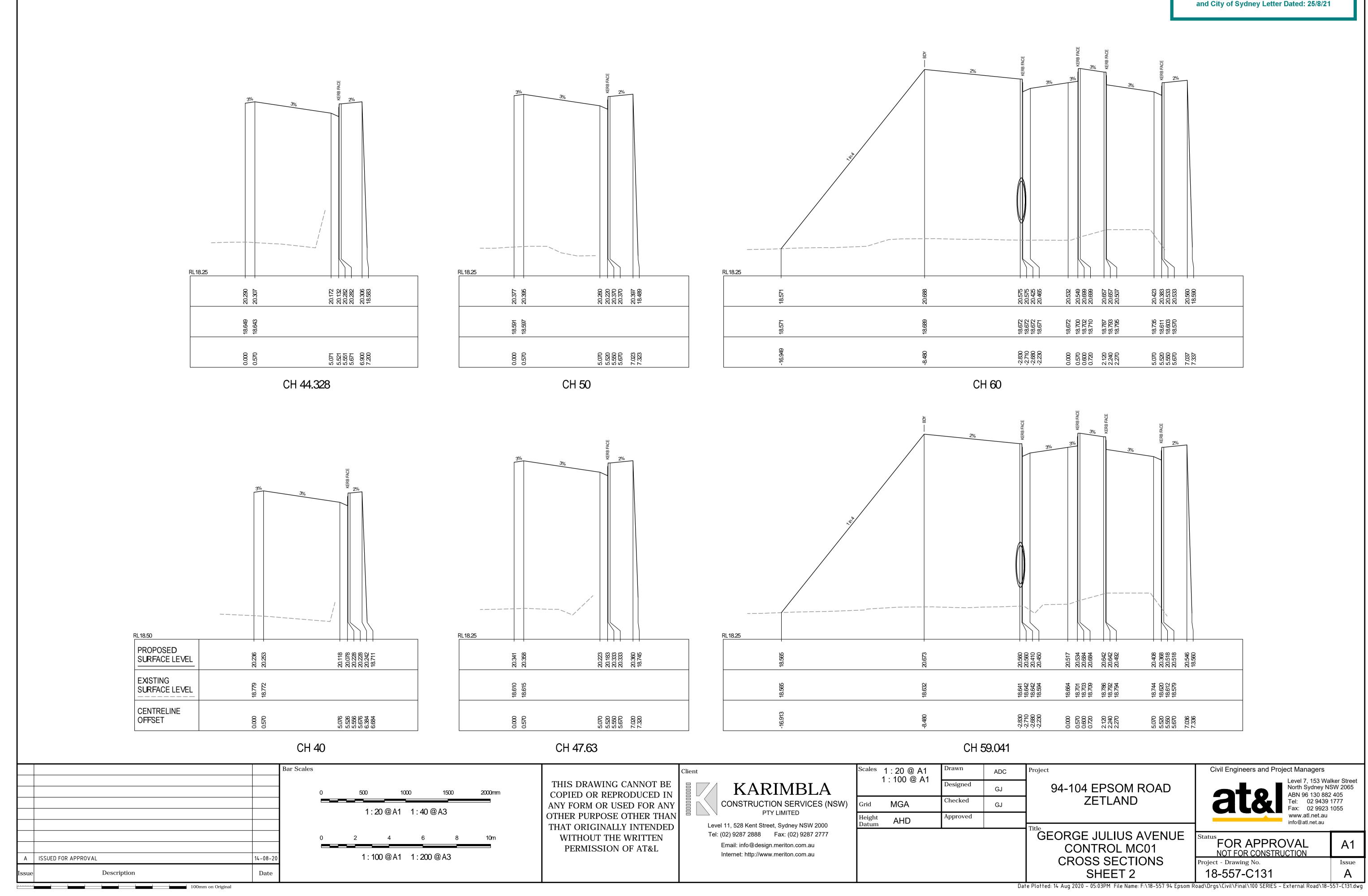
Level 11, 528 Kent Street, Sydney NSW 2000
Tel: (02) 9287 2888 Fax: (02) 9287 2777
Email: info@design.meriton.com.au
Internet: http://www.meriton.com.au

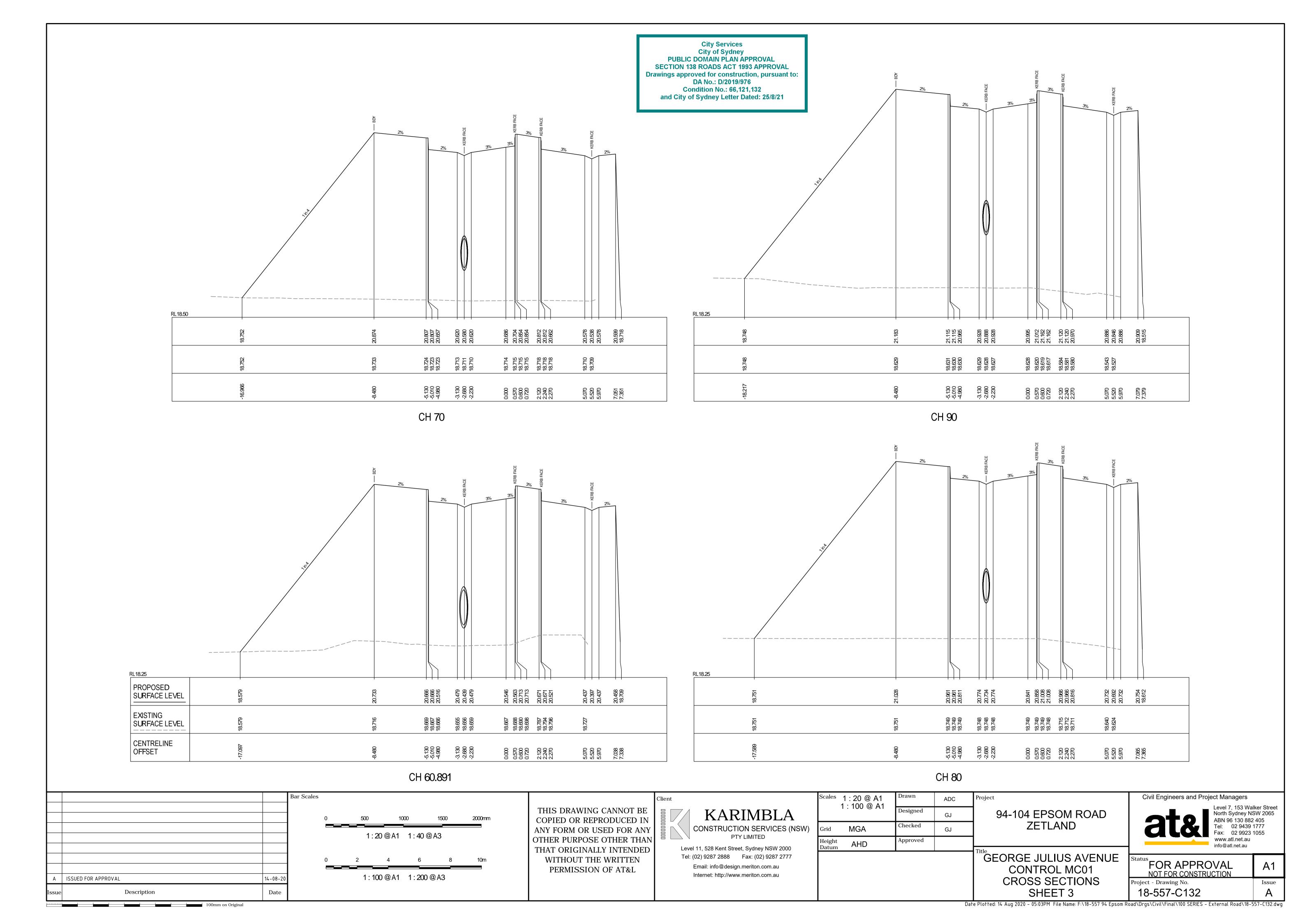
_				
Scales	1 : 10 @ A1 1 : 100 @ A1	Drawn	ADC	Projec
	1.100 @ A1	Designed	GJ	
Grid	MGA	Checked	GJ	
Height	AHD	Approved		
Datum	· · · · =			Titlo

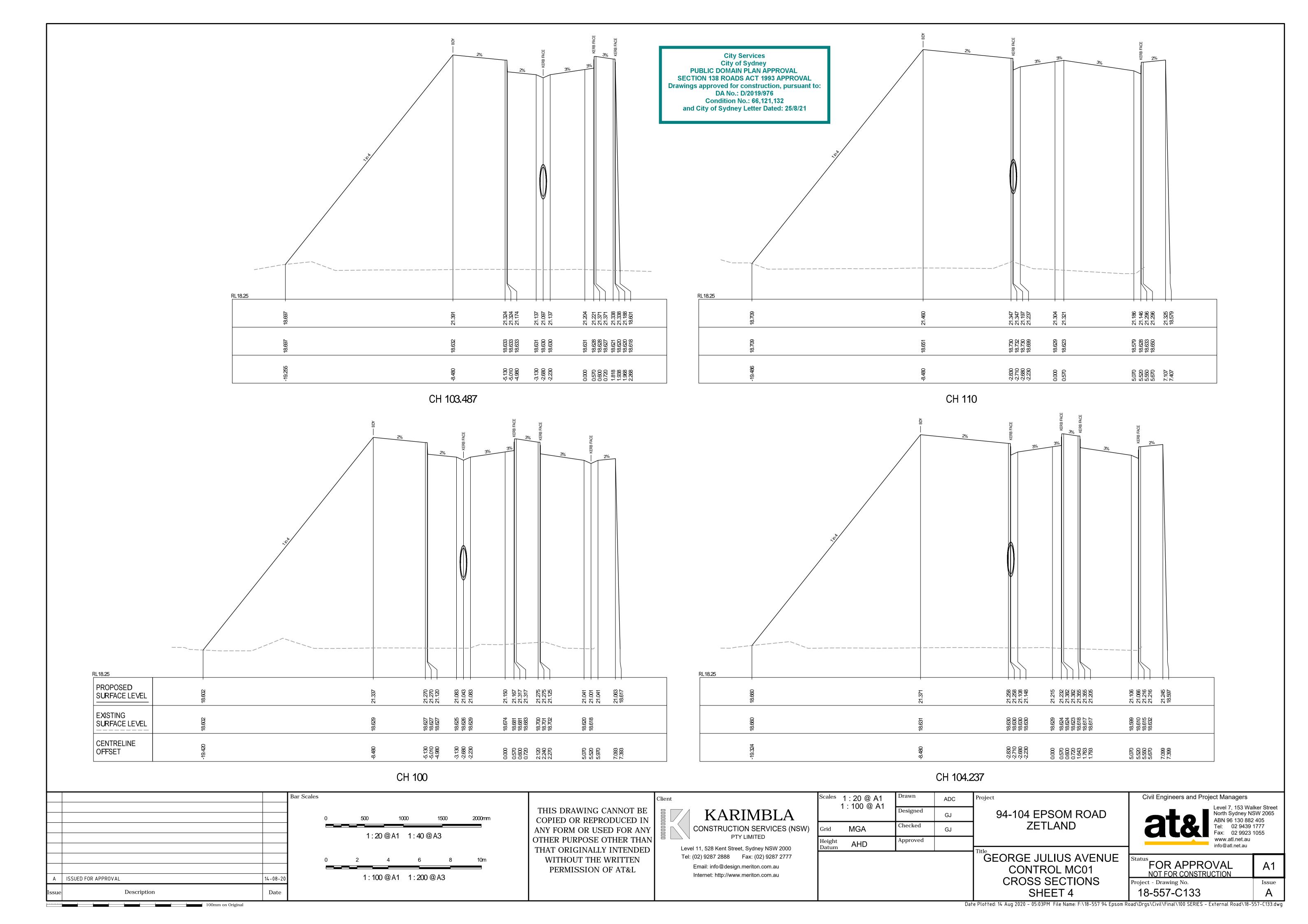
94-104 EPSOM ROAD ZETLAND

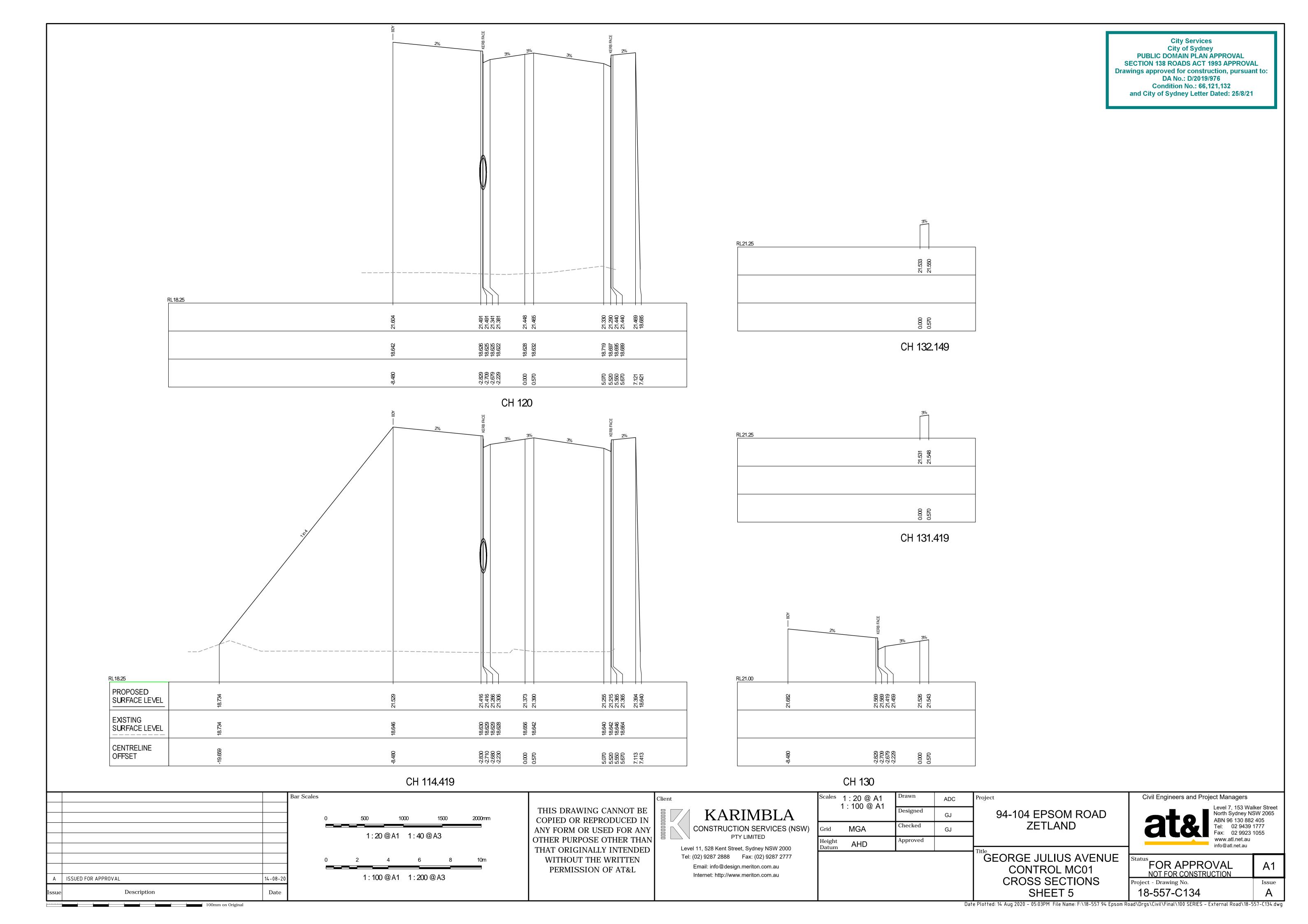
EPSOM ROAD
CONTROL LINE MC03
LONGITUDINAL SECTIONS
SHEET 2

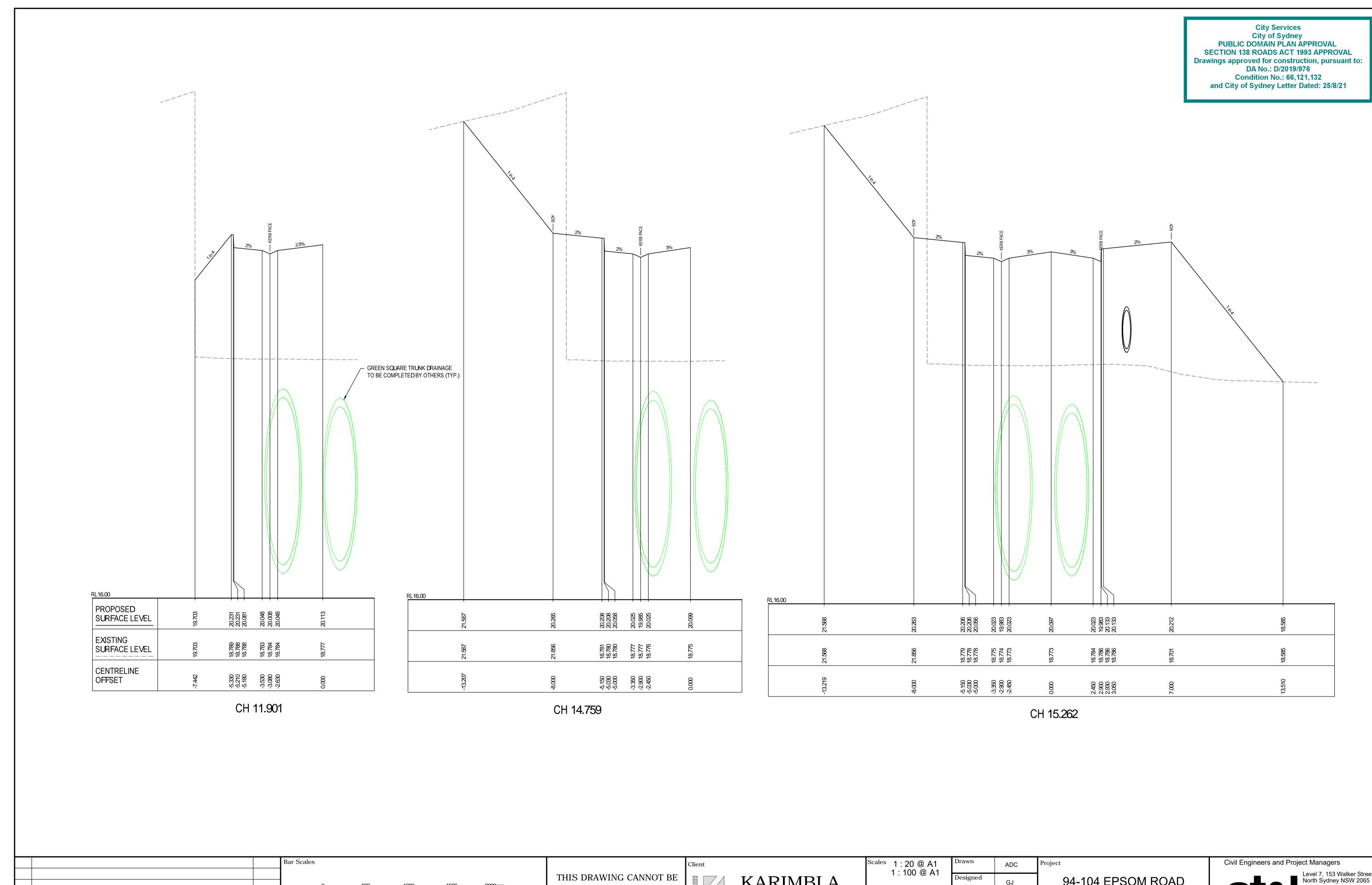
1

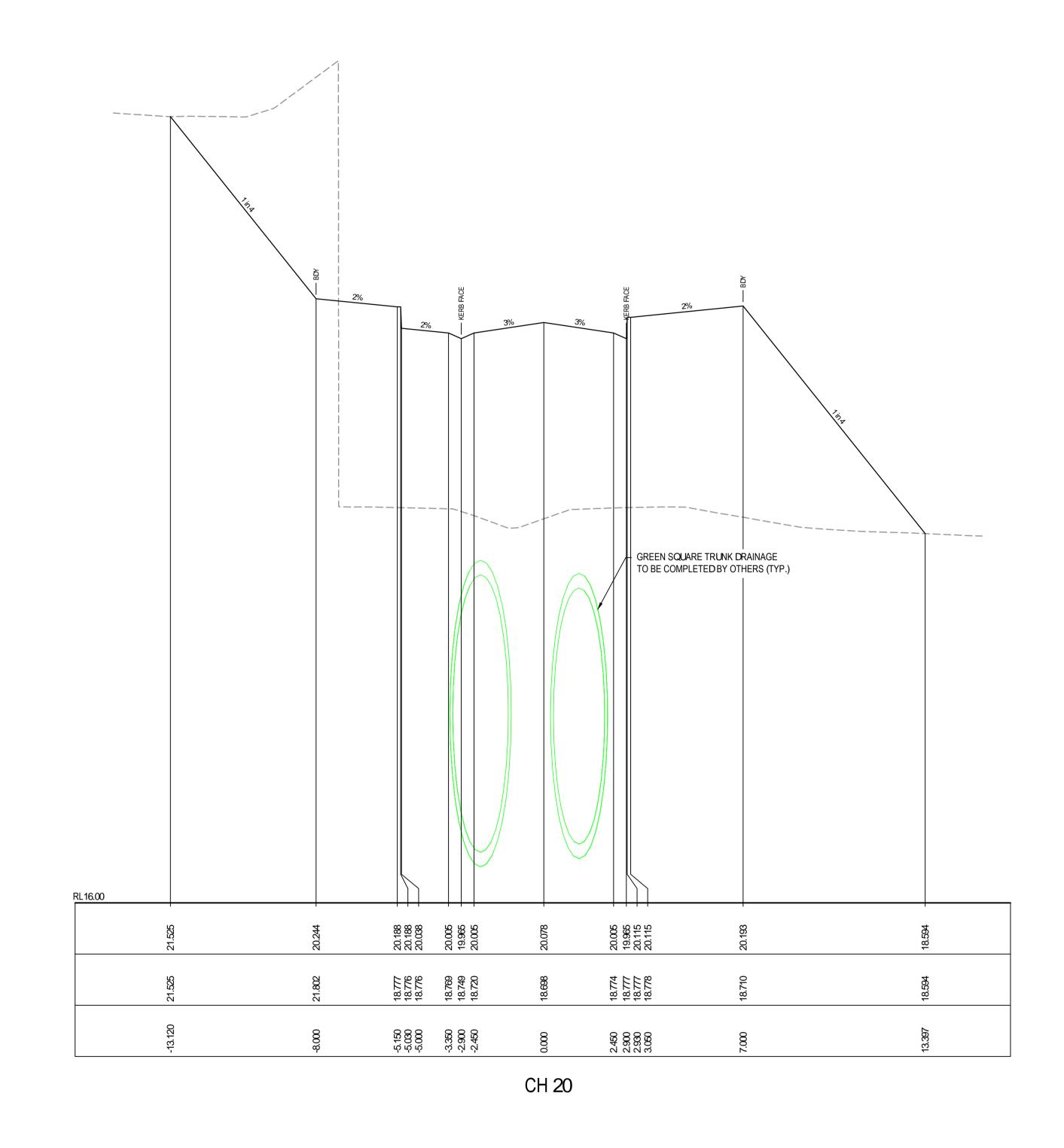

Date Plotted: 14 Aug 2020 - 05:03PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES - External Road\18-557-C125.dwg

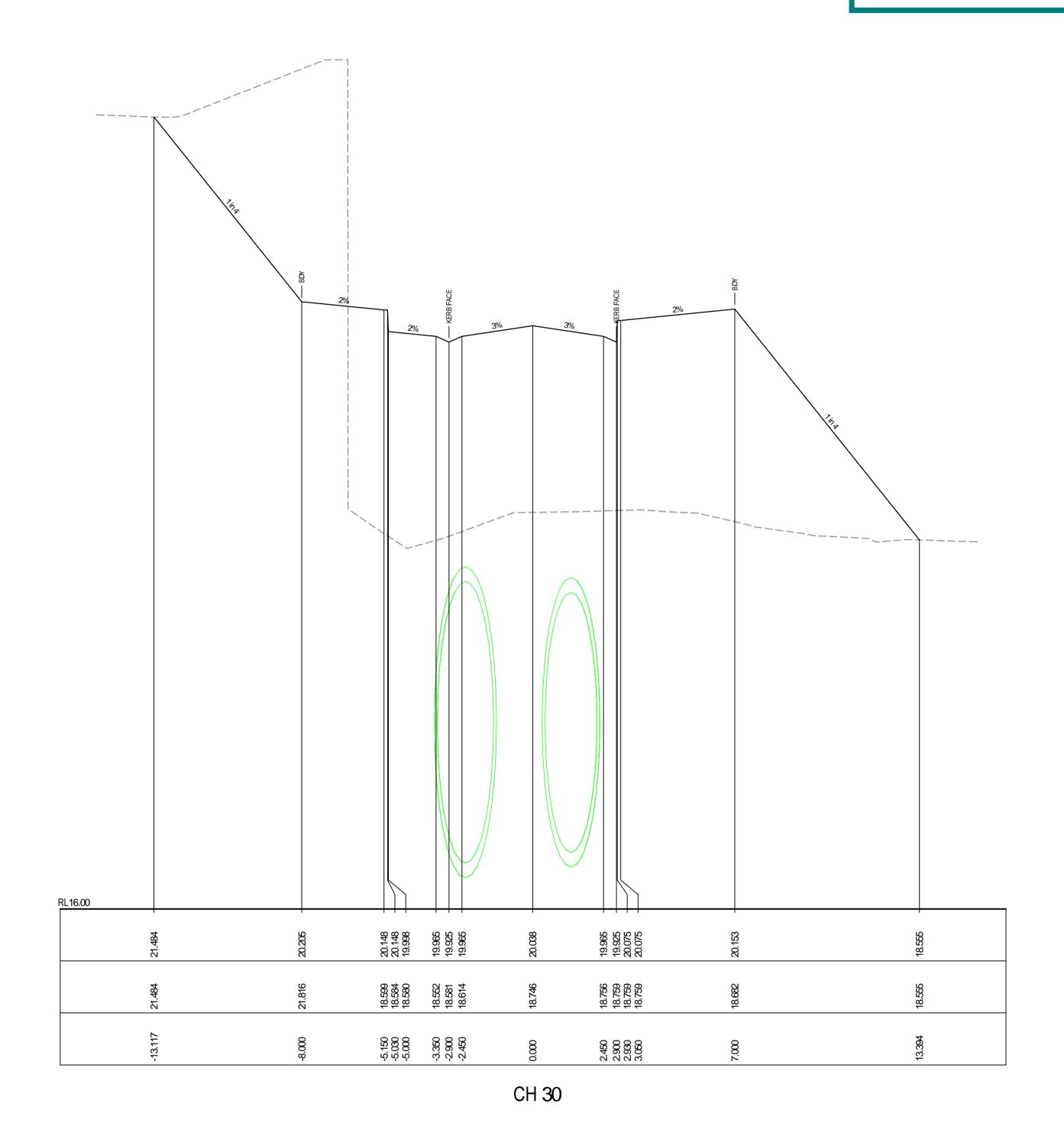

Civil Engineers and Project Managers

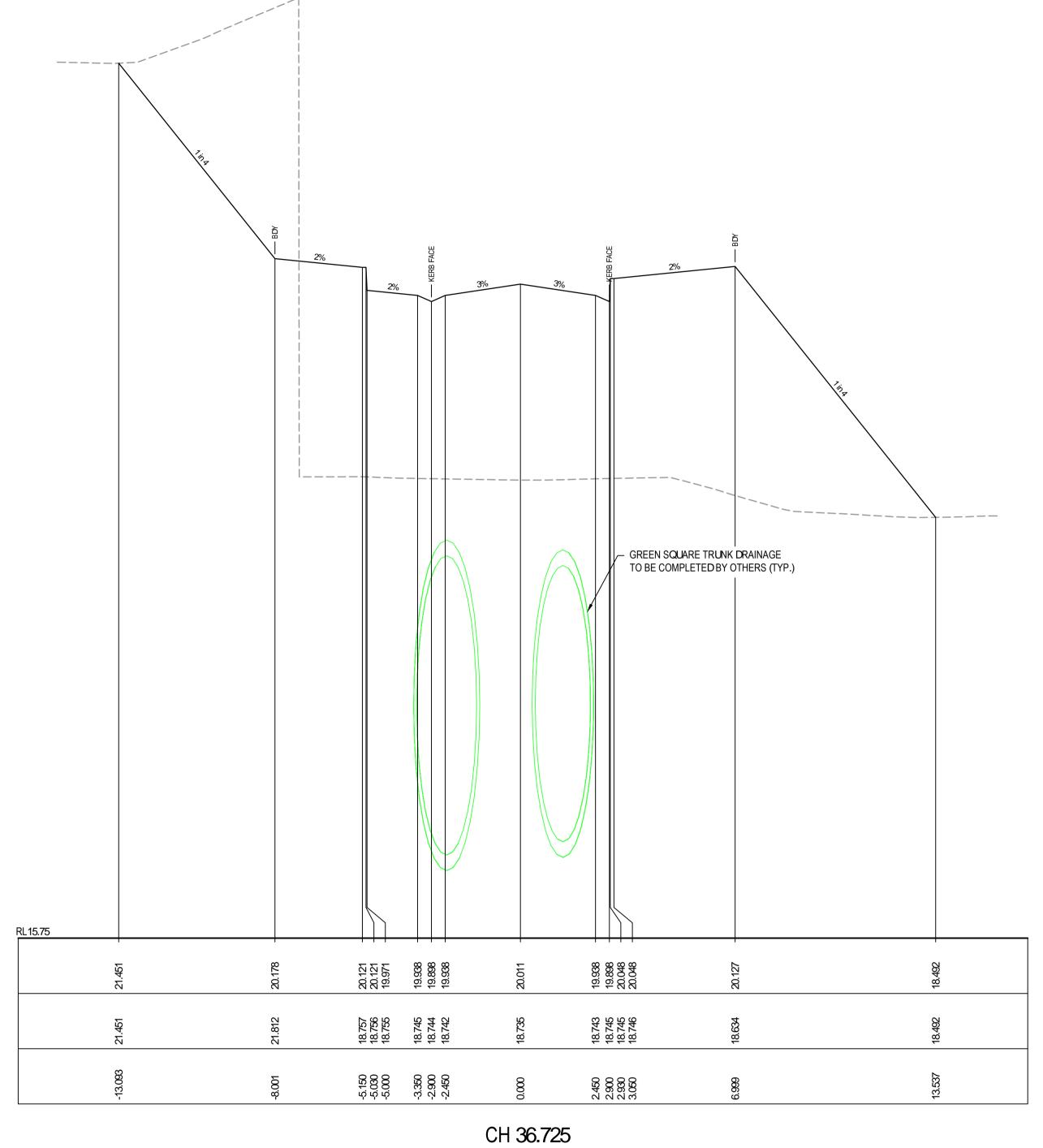

Level 7, 153 Wa
North Sydney N
ABN 96 130 88:
Tel: 02 9439


Level 7, 153 Walker Street North Sydney NSW 2065 ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055 www.atl.net.au info@atl.net.au

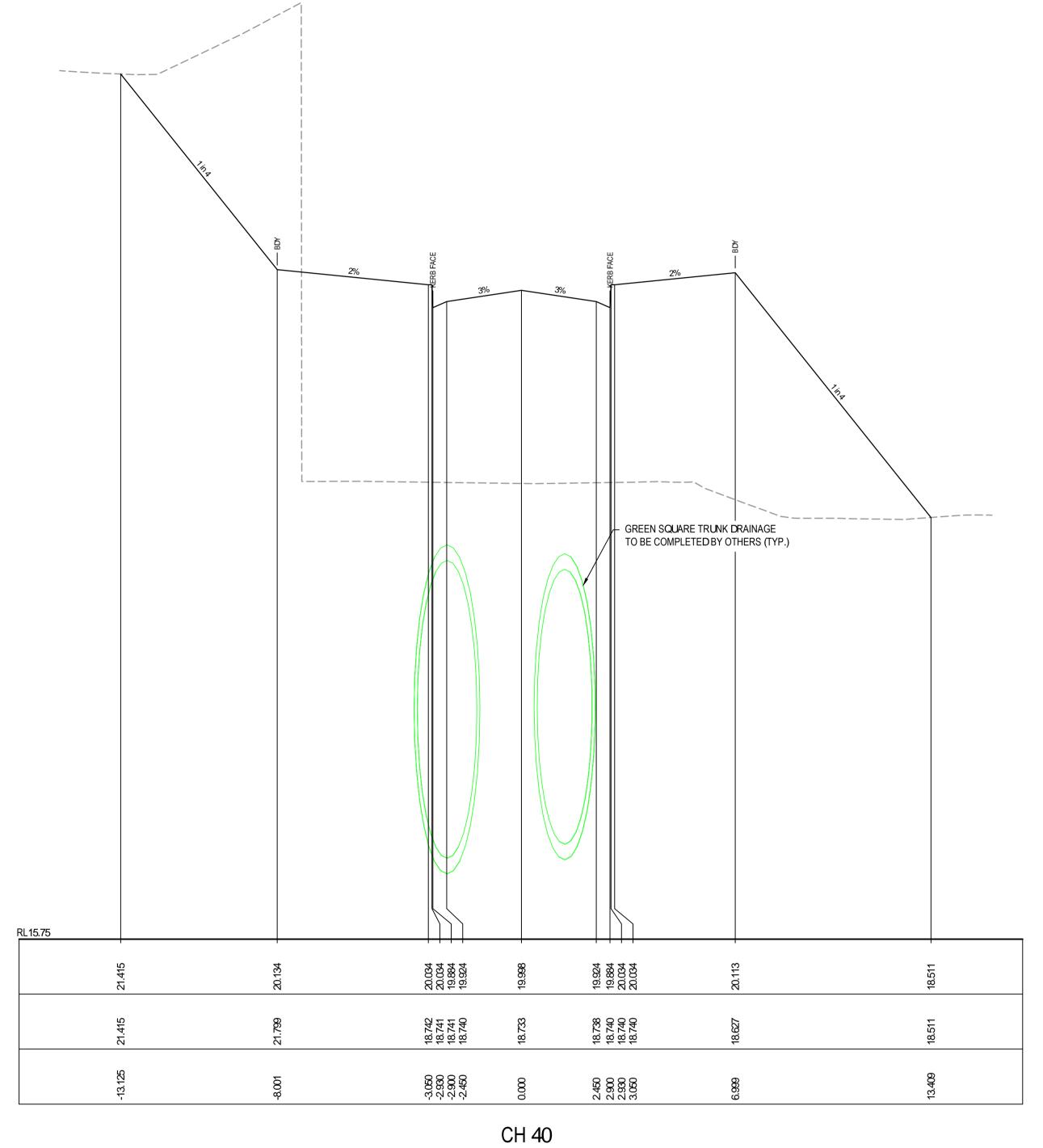

FOR APPROVAL NOT FOR CONSTRUCTION	A1
oject - Drawing No.	Issue
18-557-C125	Α

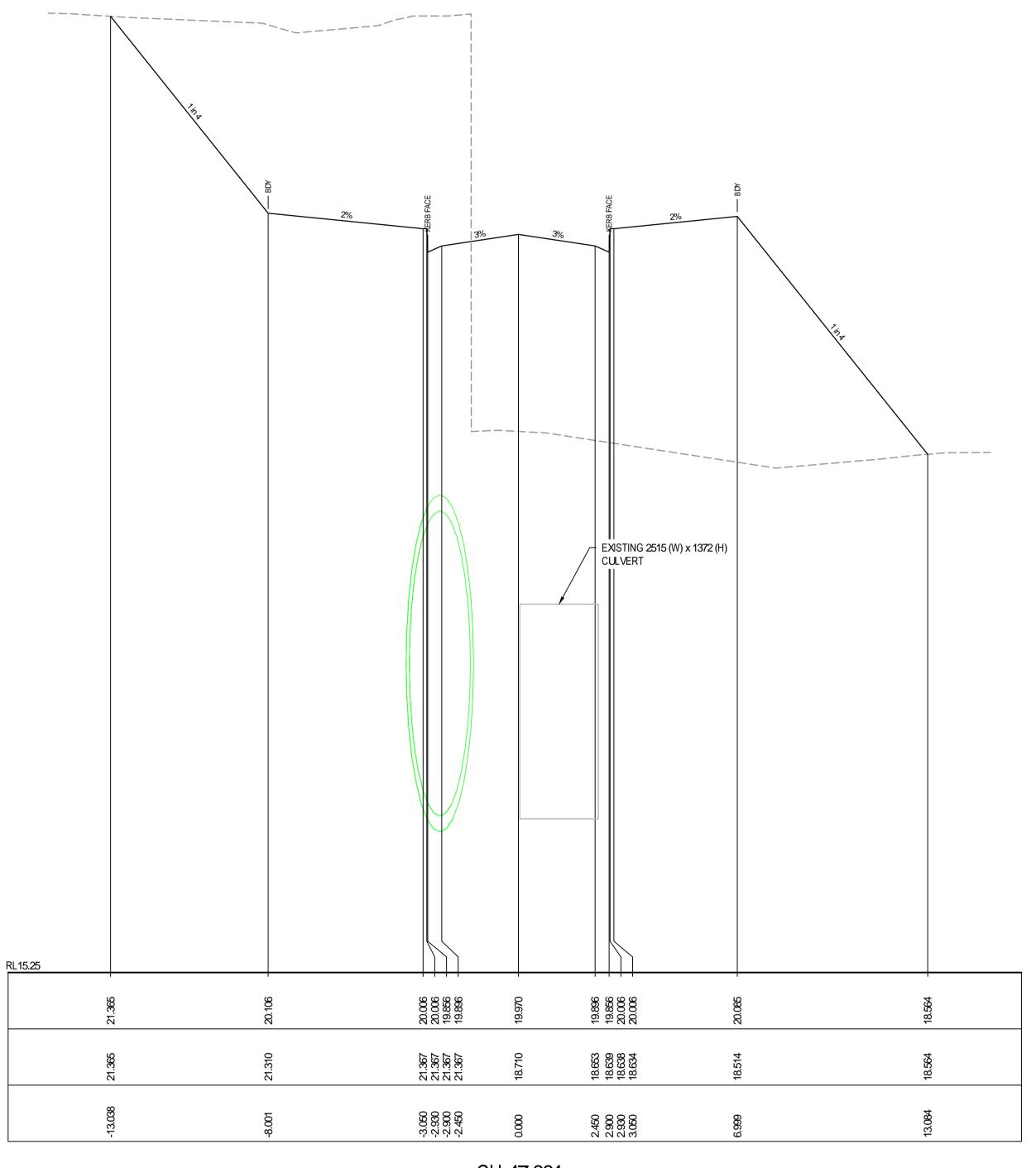






		0	1:20 @ A1 1:40 @ A3	2000mm	THIS DRAWING CANNOT BE COPIED OR REPRODUCED IN ANY FORM OR USED FOR ANY OTHER PURPOSE OTHER THAN THAT ORIGINALLY INTENDED	Level 11, 626 North Street, Sydney Nov 2000	1: 100 @ A1 1: 100 @ A1 Grid MGA Height AHD	Designed Checked Approved	GJ GJ	94-104 EPSOM ROAD ZETLAND	Level 7, 153 Wa North Sydney N ABN 96 130 88 Tel: 02 9439 Fax: 02 9923 www.atl.net.au info@atl.net.au	Valker Street NSW 2065 82 405 9 1777 3 1055 u
A ISSUED FOR APPROVAL Issue Description 100mm on Original	14-08-20 Date	0 2	2 4 6 8 1:100@A1 1:200@A3	3 10m	WITHOUT THE WRITTEN PERMISSION OF AT&L	Tel: (02) 9287 2888 Fax: (02) 9287 2777 Email: info@design.meriton.com.au Internet: http://www.meriton.com.au			Dat	ROSE VALLEY WAY CONTROL MC02 CROSS SECTIONS SHEET 1 e Plotted: 14 Aug 2020 - 05:03PM File Name: F:\18-557 94 Epsom F	FOR APPROVAL NOT FOR CONSTRUCTION Project - Drawing No. 18-557-C135 Coad\Drgs\Civil\Final\100 SERIES - External Road\18-	A1 Issue A 3-557-C135.dwg


Bar Scales Scales 1:20 @ A1 Civil Engineers and Project Managers Project Client ADC 1:100 @ A1 Level 7, 153 Walker Street North Sydney NSW 2065 ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055 www.atl.net.au THIS DRAWING CANNOT BE KARIMBLA Designed 94-104 EPSOM ROAD GJ COPIED OR REPRODUCED IN ZETLAND CONSTRUCTION SERVICES (NSW) MGA GJ ANY FORM OR USED FOR ANY 1:20 @ A1 1:40 @ A3 PTY LIMITED OTHER PURPOSE OTHER THAN Approved AHD info@atl.net.au Level 11, 528 Kent Street, Sydney NSW 2000 THAT ORIGINALLY INTENDED **ROSE VALLEY WAY** Tel: (02) 9287 2888 Fax: (02) 9287 2777 WITHOUT THE WRITTEN FOR APPROVAL **A1** Email: info@design.meriton.com.au CONTROL MC02 PERMISSION OF AT&L NOT FOR CONSTRUCTION Internet: http://www.meriton.com.au 1:100@A1 1:200@A3 **CROSS SECTIONS** ISSUED FOR APPROVAL 14-08-20 Project - Drawing No. Issue SHEET 2 18-557-C136 Date Description Date Plotted: 14 Aug 2020 – 05:03PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES – External Road\18-557-C136.dwg



H 36.725

		Bar Scales			Client	Scales 1:20		Drawn	ADC	Project	Civil Engineers and Project Manage	ers
			1 : 20 @ 1 : 40 @ 12	ANY FORM OR USED FOR ANY OTHER PURPOSE OTHER THAN CONSTRUCTION SERVICE PTY LIMITED		1 : 100 @ A1		Designed	GJ	94-104 EPSOM ROAD	Level 7, 153 Walker Street North Sydney NSW 2065	
		=			CONSTRUCTION SERVICES (NSW)	Grid MGA	A	Checked	GJ	ZETLAND	ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055	
			1.20 @ A 1 1.40 @ A 3			Height Datum AHD		Approved		Title		www.atl.net.au info@atl.net.au
		0	2 4 6 8 10m	WITHOUT THE WRITTEN	Tel: (02) 9287 2888 Fax: (02) 9287 2777 Email: info@design.meriton.com.au					ROSE VALLEY WAY	FOR APPROVAL	Α1
A ISSUED FOR APPROVAL	14-08-20		1:100@A1 1:200@A3	PERMISSION OF AT&L	Internet: http://www.meriton.com.au					CONTROL MC02 CROSS SECTIONS	NOT FOR CONSTRUCTION Project - Drawing No.	Issue
Issue Description	Date									SHEET 3	18-557-C137	Α

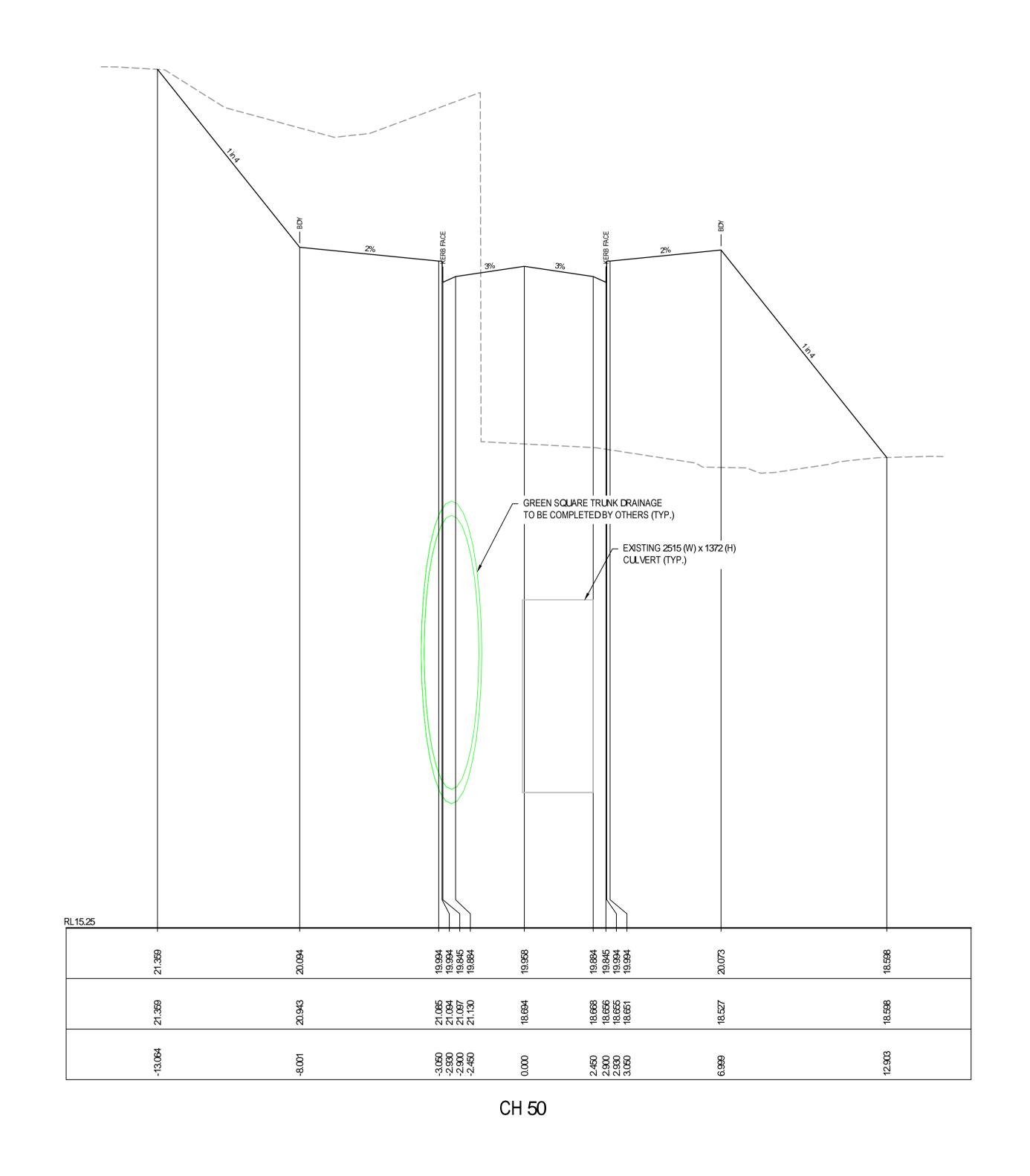
CH 47.001

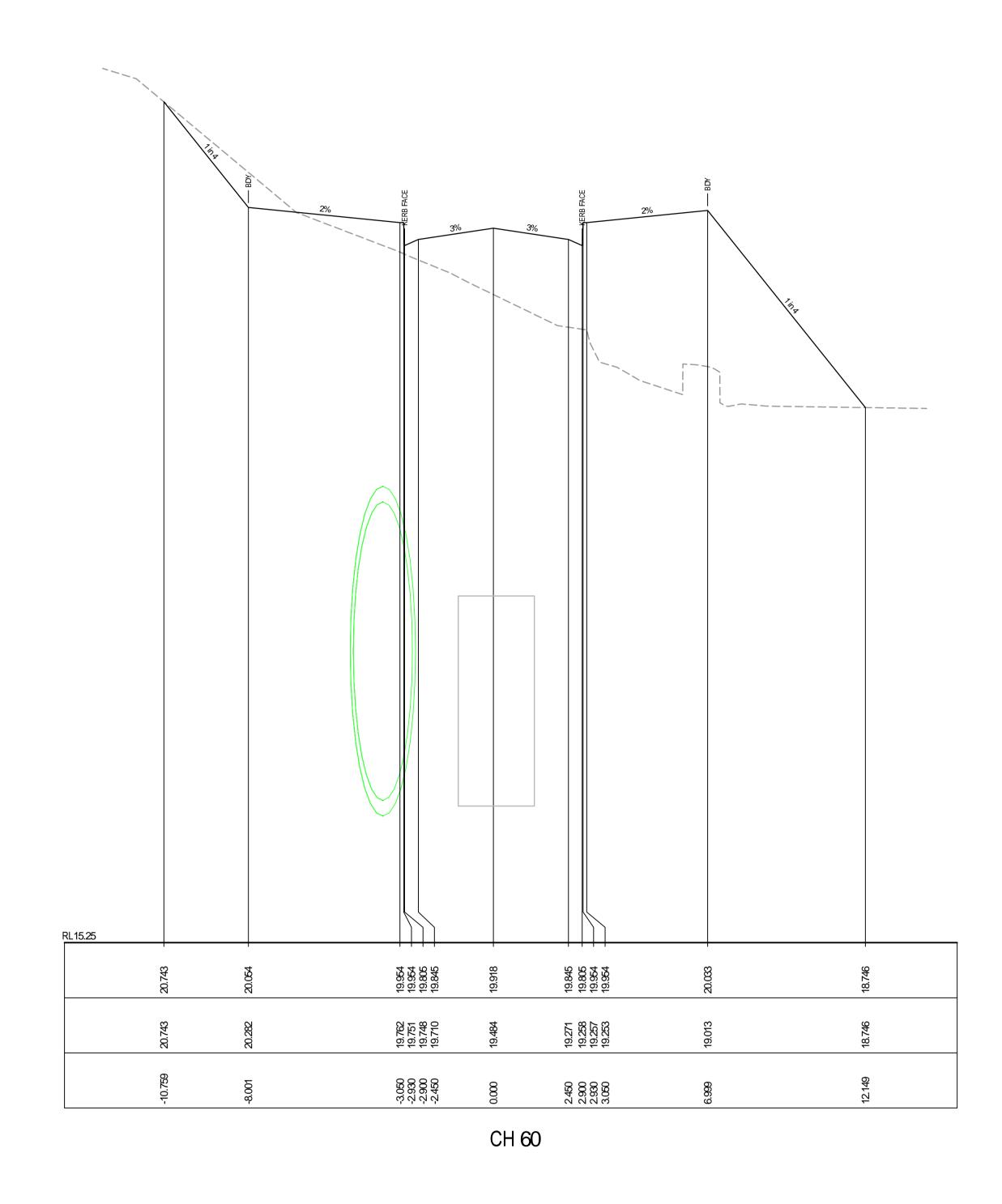
			Bar Scales
			0 500 1000 1500 2000mm
			1:20 @ A1 1:40 @ A3
			0 2 4 6 8 10m
Α	ISSUED FOR APPROVAL	14-08-20	1:100 @ A1 1:200 @ A3
Issue	Description	Date	

100mm on Original

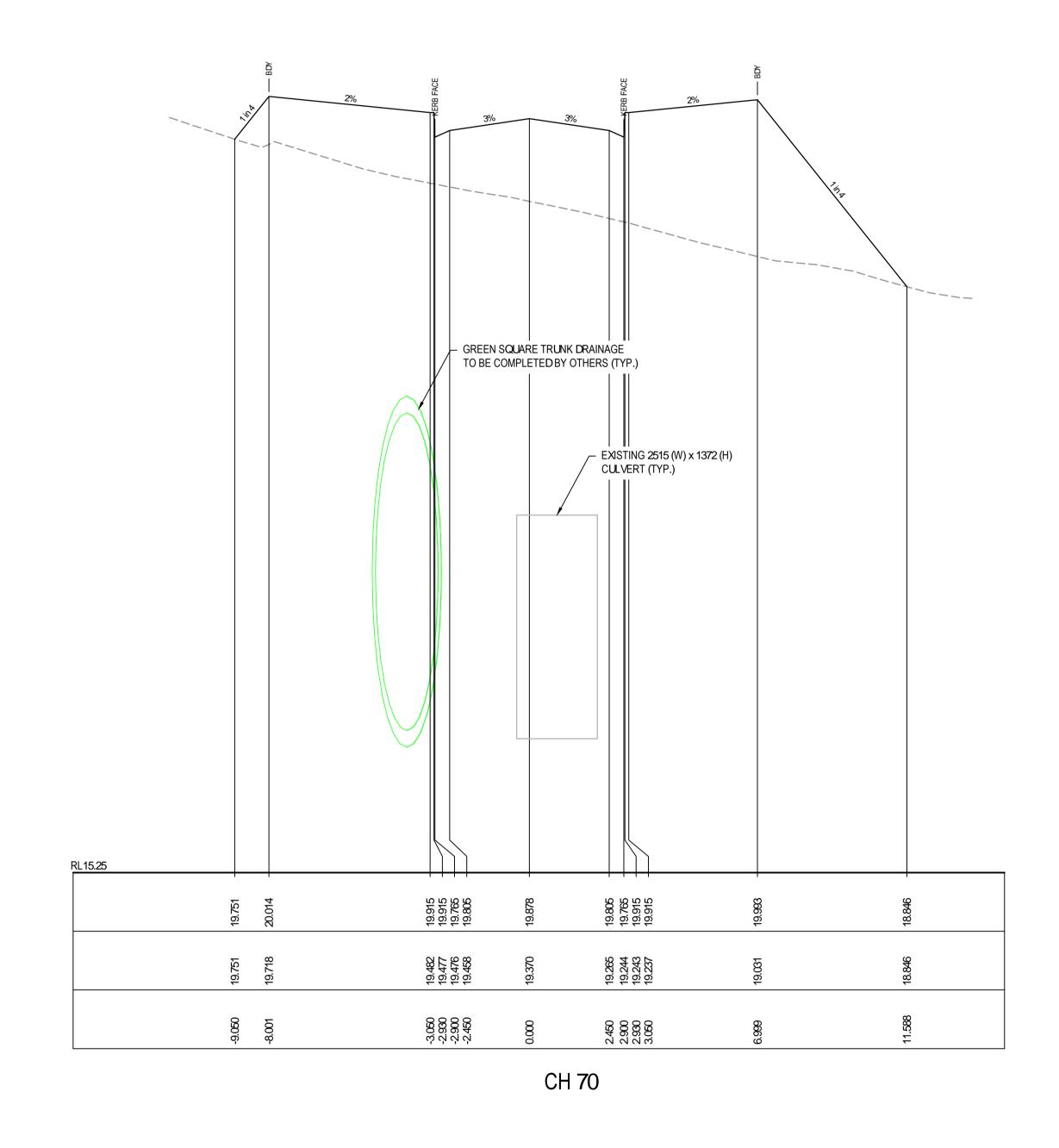
THIS DRAWING CANNOT BE COPIED OR REPRODUCED IN ANY FORM OR USED FOR ANY OTHER PURPOSE OTHER THAN THAT ORIGINALLY INTENDED WITHOUT THE WRITTEN PERMISSION OF AT&L

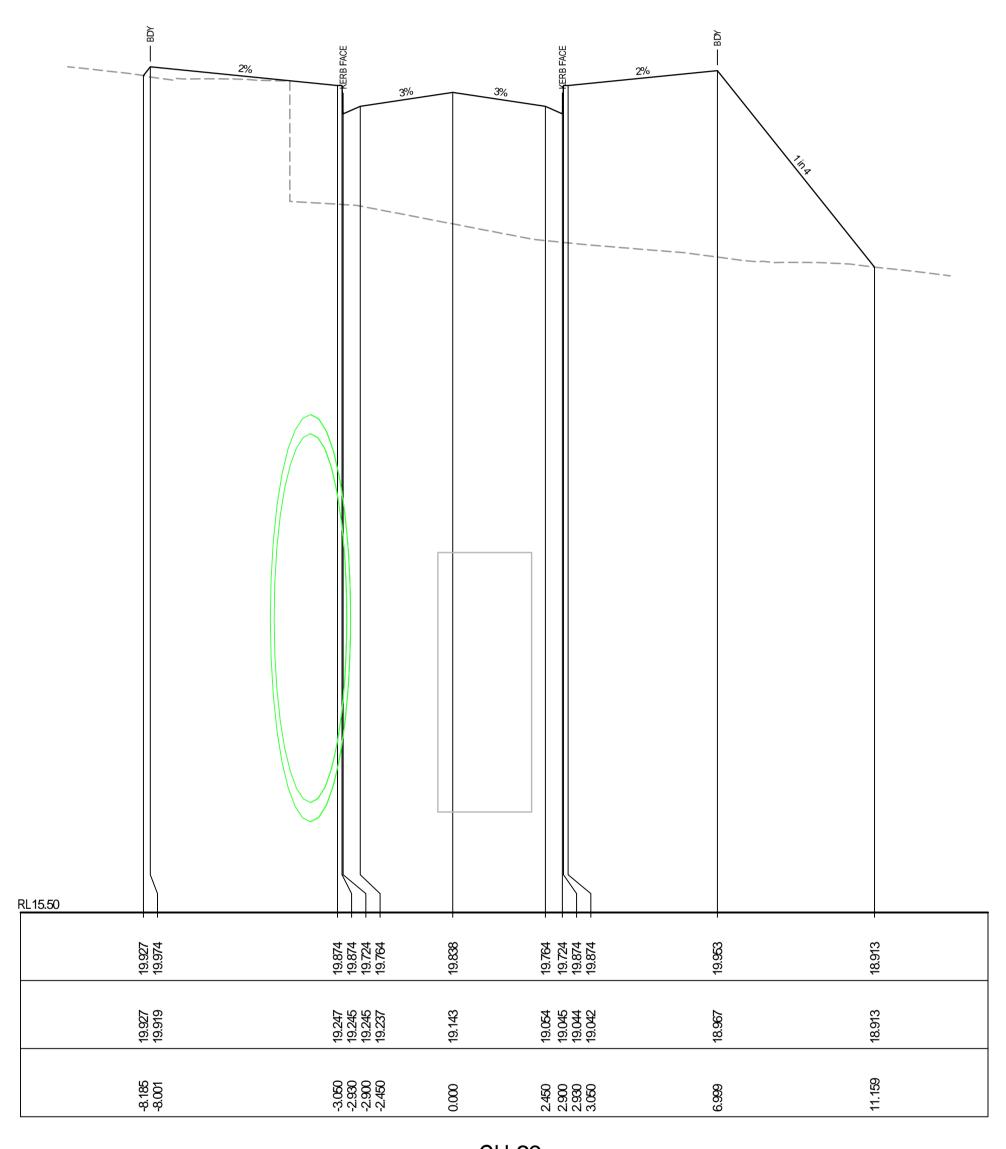
KARIMBLA CONSTRUCTION SERVICES (NSW) PTY LIMITED

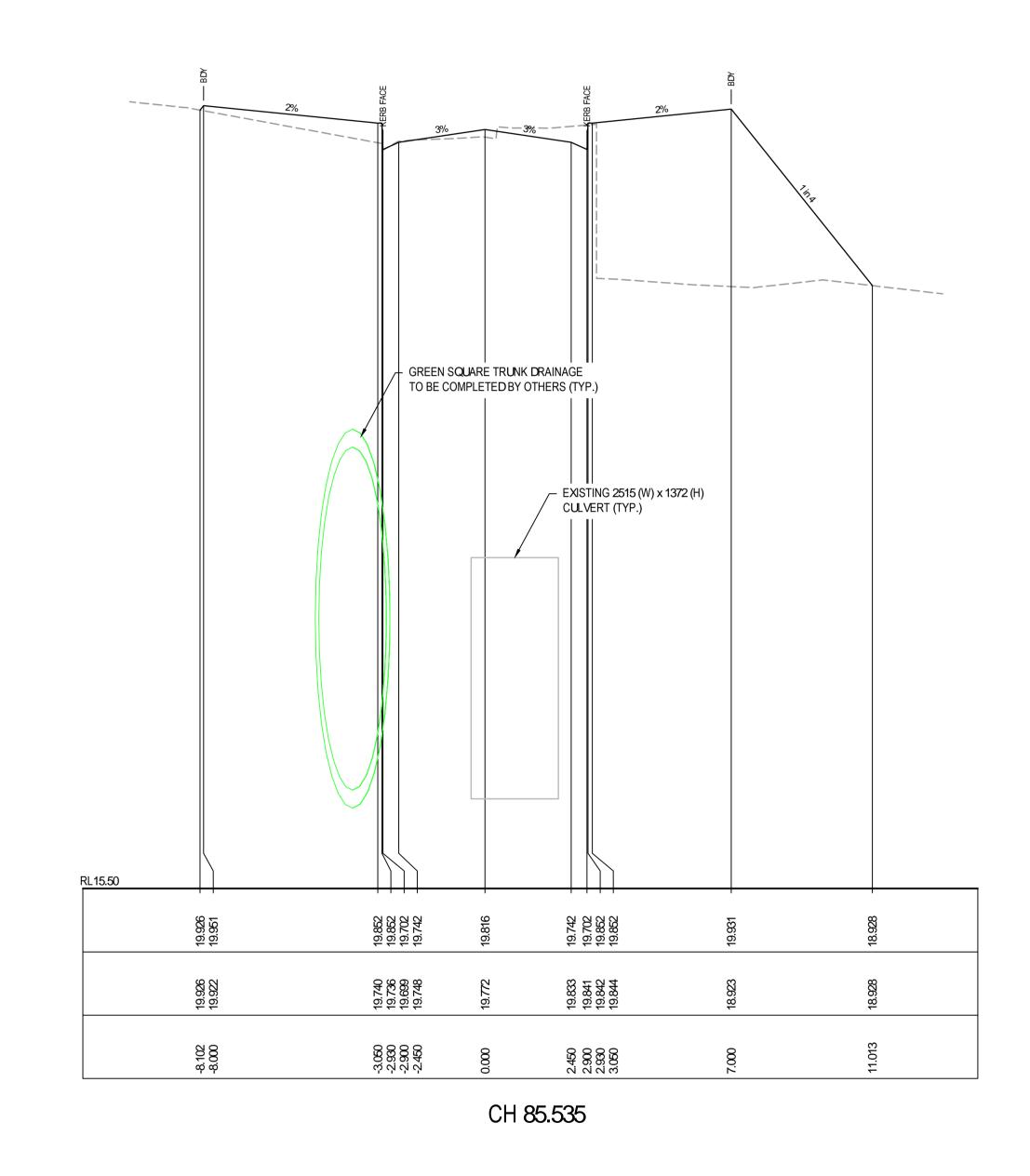

Level 11, 528 Kent Street, Sydney NSW 2000 Tel: (02) 9287 2888 Fax: (02) 9287 2777 Email: info@design.meriton.com.au Internet: http://www.meriton.com.au

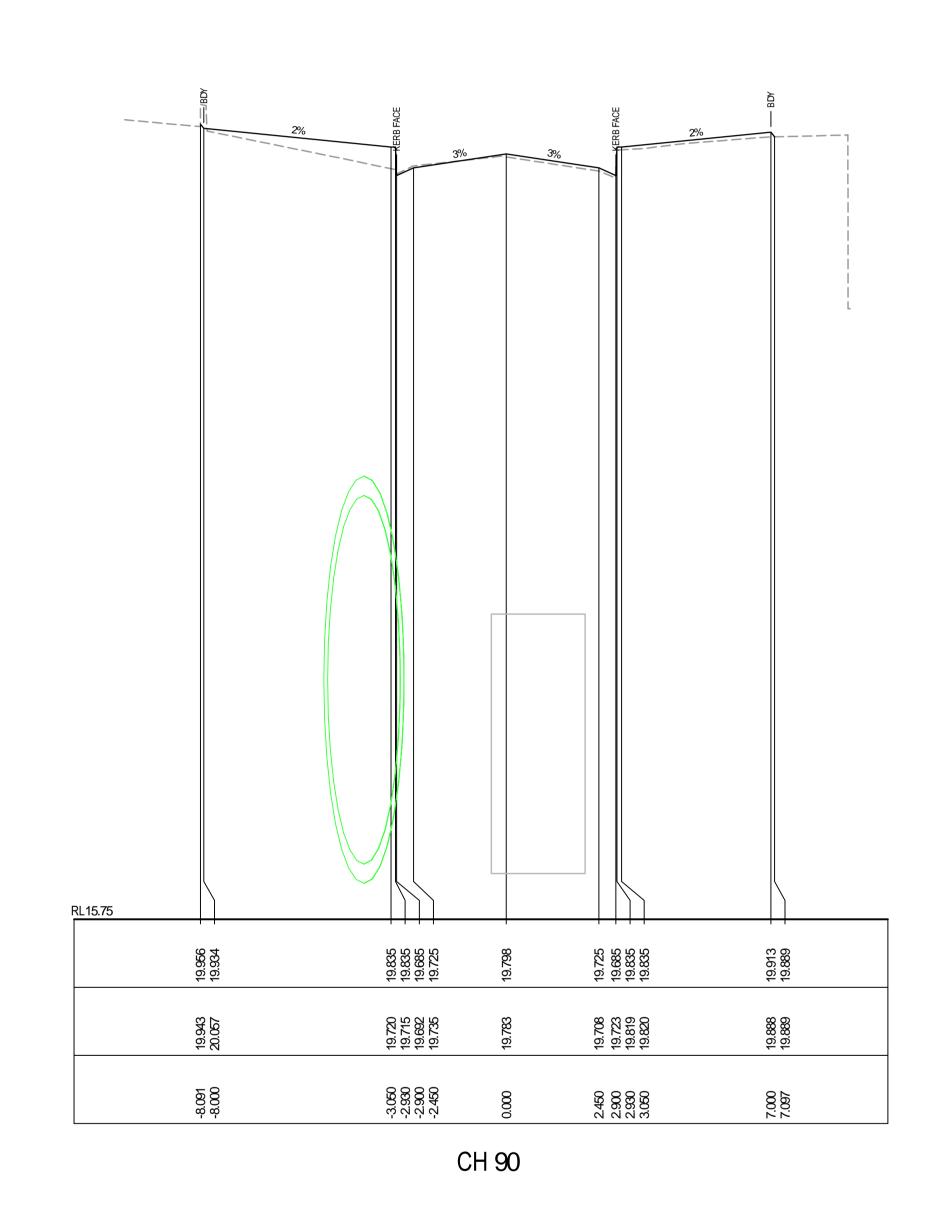

^{Scales} 1 : 20 @ A1 1 : 100 @ A1	Drawn	ADC	Project
1 . 100 @ A1	Designed		94-104
Grid MGA	Checked	GJ	
Height AHD	Approved		

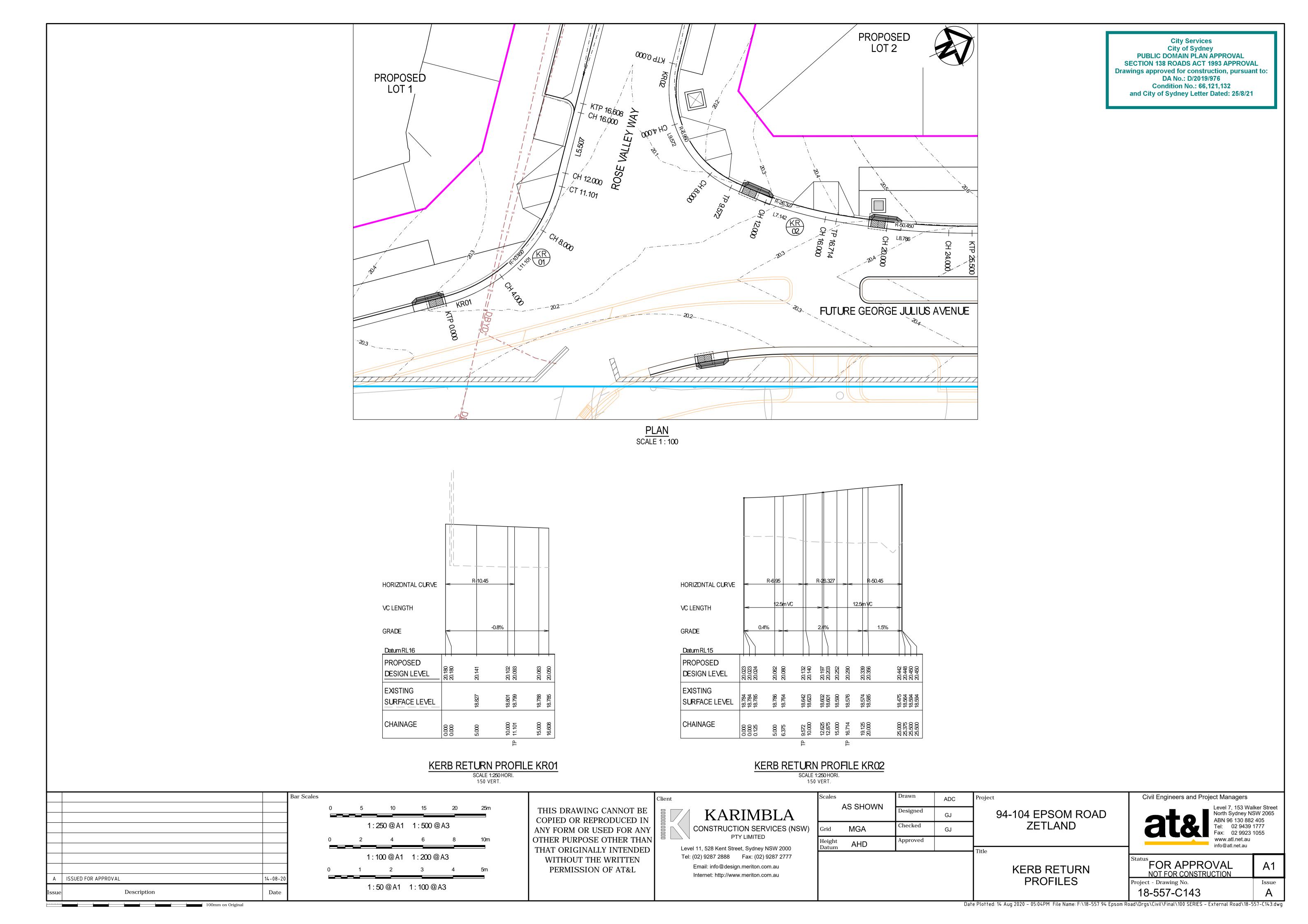
04 EPSOM ROAD ZETLAND

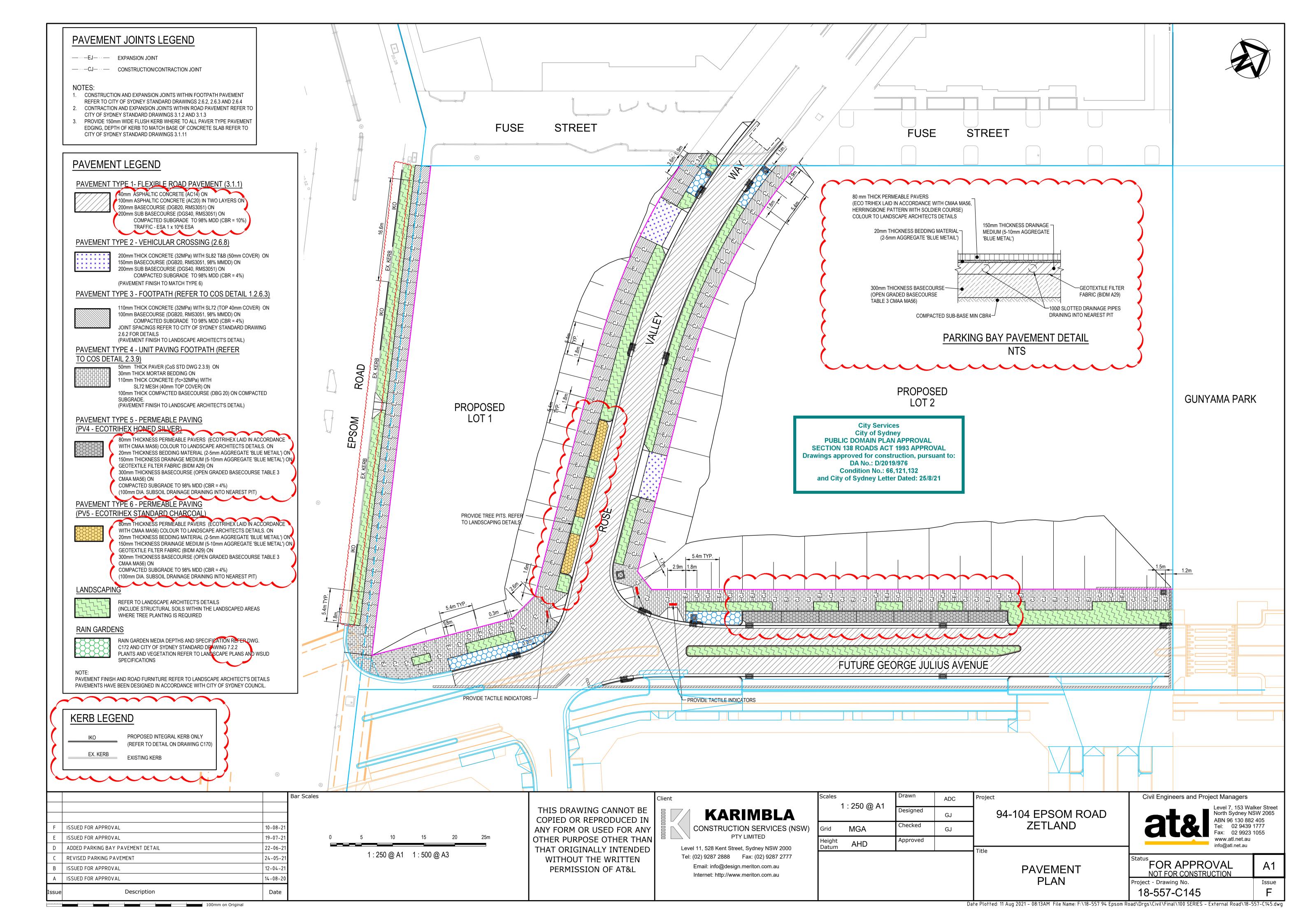

ROSE VALLEY WAY CONTROL MC02 CROSS SECTIONS Civil Engineers and Project Managers Level 7, 153 Walker Street North Sydney NSW 2065 ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055 www.atl.net.au info@atl.net.au

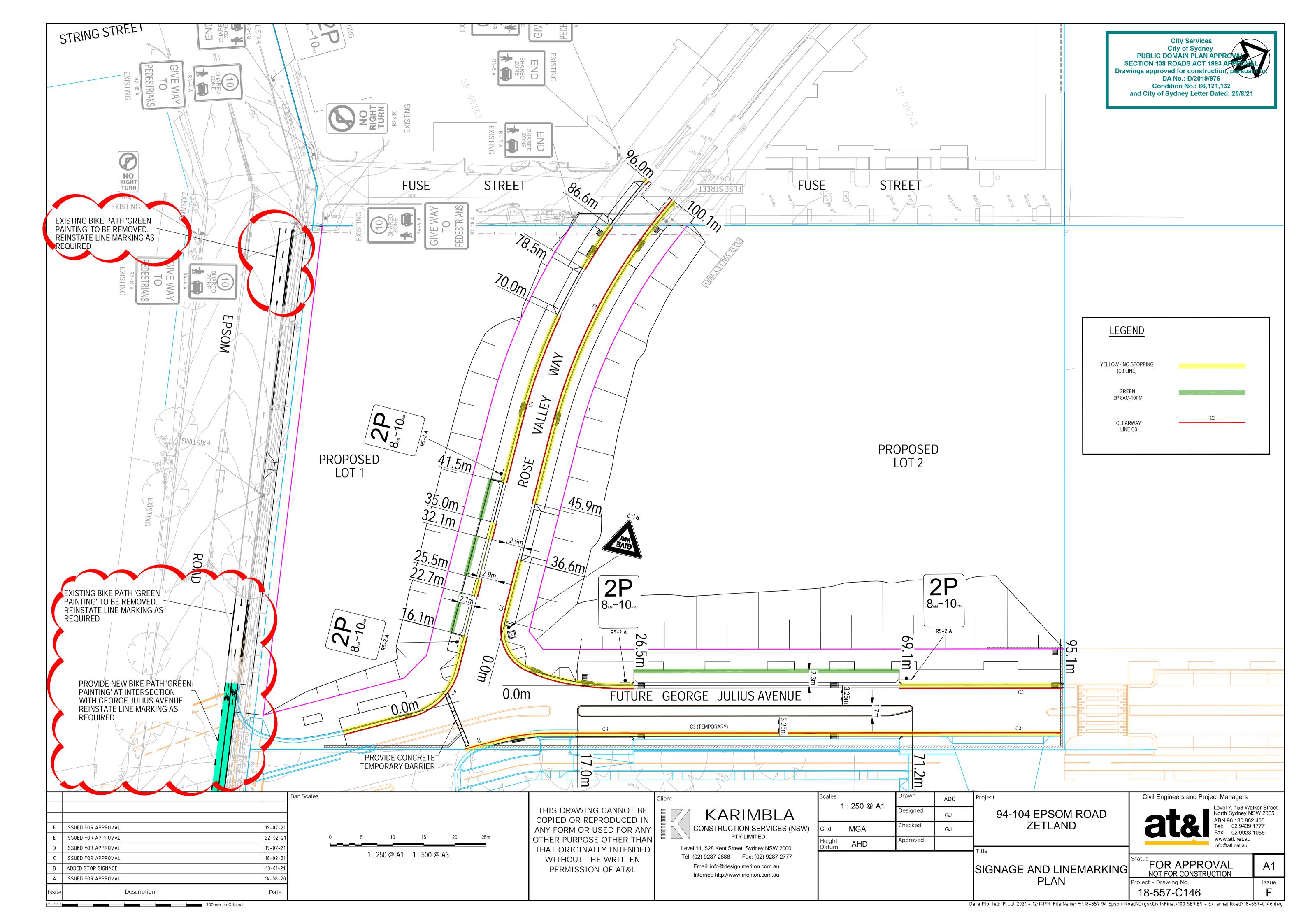

	OCITITOL MODE	FOR APPROVAL NOT FOR CONSTRUCTION	A1
	CROSS SECTIONS	Project - Drawing No.	Issue
	SHEET 4	18-557-C138	Α
Dat	e Plotted: 14 Aug 2020 – 05:04PM File Name: F:\18–557 94 Epsom R	oad\Drgs\Civil\Final\100	557-C138.dwg

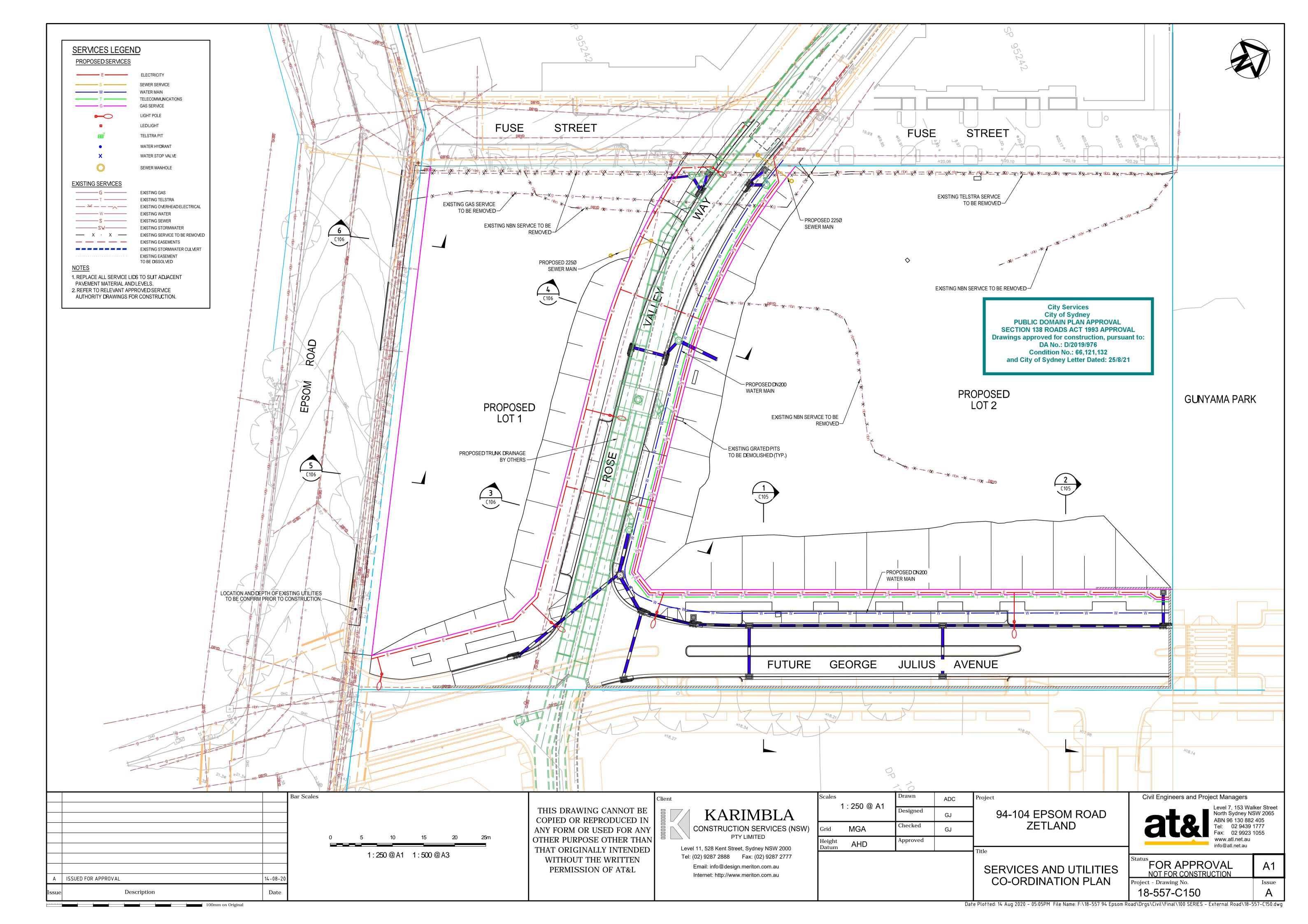

	Bar Scales					Client	Scales 1:20 @ A1		ADC	Project	Civil Engineers and Project Managers Level 7, 153 Walker Street North Sydney NSW 2065 ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055	
	0	500	500 1000 1500 200 1:20 @ A1 1:40 @ A3	2000mm	THIS DRAWING CANNOT BE	OR REPRODUCED IN OR USED FOR ANY RPOSE OTHER THAN	1 : 100 @ <i>A</i>	Designed	ecked GJ	94-104 EPSOM ROAD ZETLAND		
		1 · 20			ANY FORM OR USED FOR ANY OTHER PURPOSE OTHER THAN THAT ORIGINALLY INTENDED		Grid MGA	Checked				
		1.20					Height Datum AHD	Approved		Title	www.atl.net info@atl.net.a	
	0	2	4 6	8 10m	WITHOUT THE WRITTEN	Tel: (02) 9287 2888 Fax: (02) 9287 2777 Email: info@design.meriton.com.au				ROSE VALLEY WAY	FOR APPROVAL	
SUED FOR APPROVAL	14-08-20	1 : 100	@A1 1:200@A3		PERMISSION OF AT&L	Internet: http://www.meriton.com.au				CONTROL MC02 CROSS SECTIONS	NOT FOR CONSTRUCTION Project - Drawing No.	Iss
Description	Date									SHEET 5	18-557-C139	

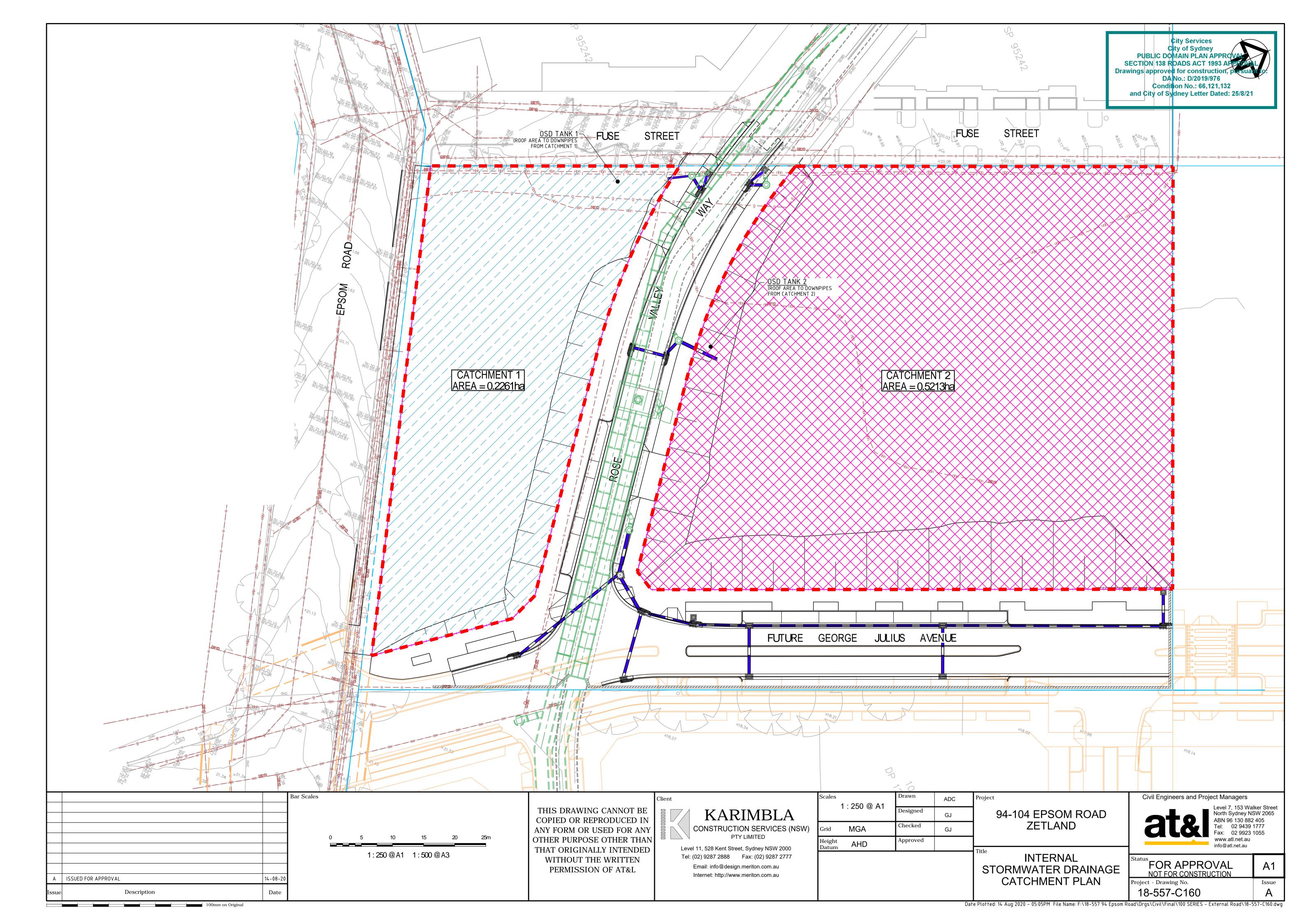


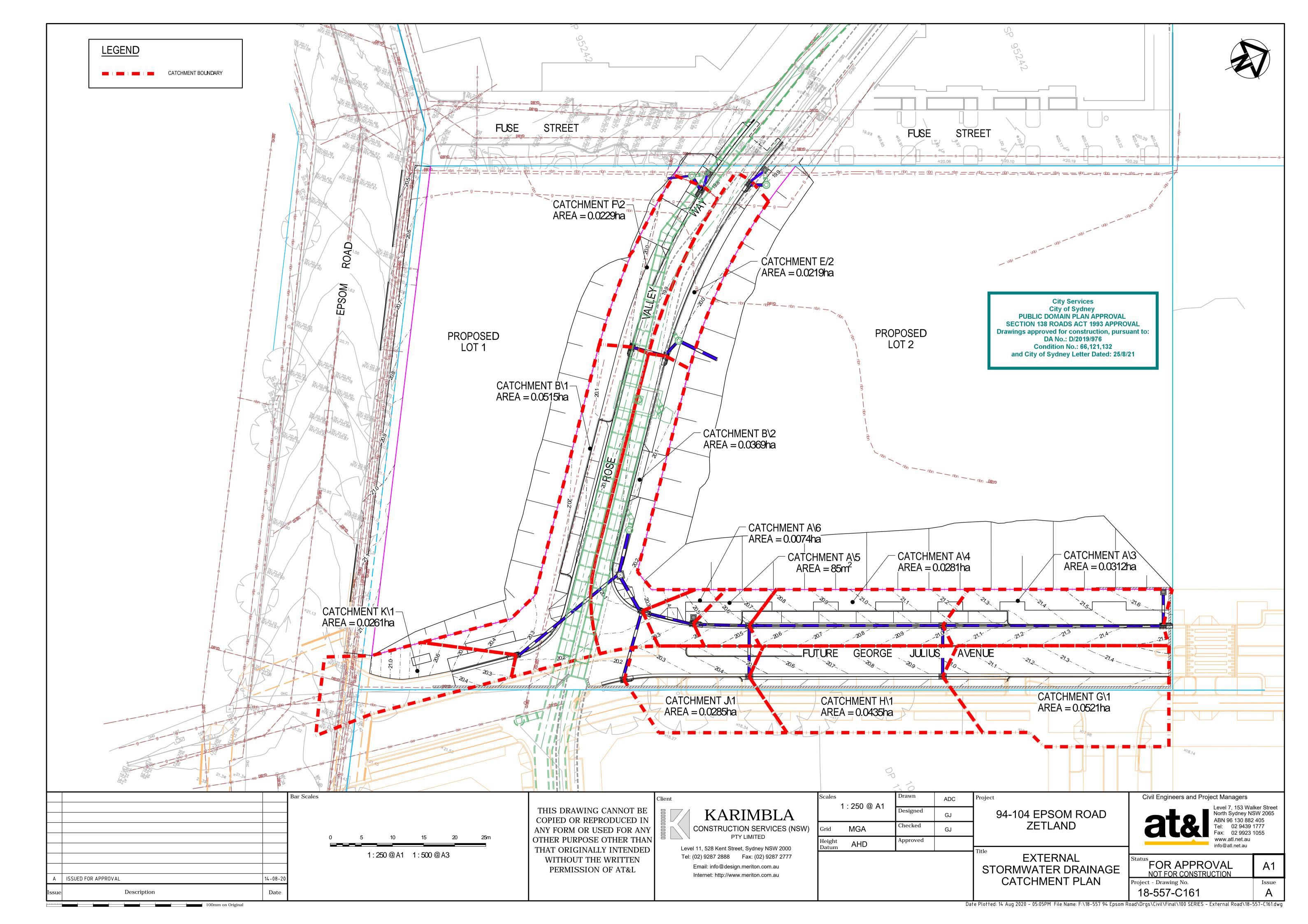

CH 80

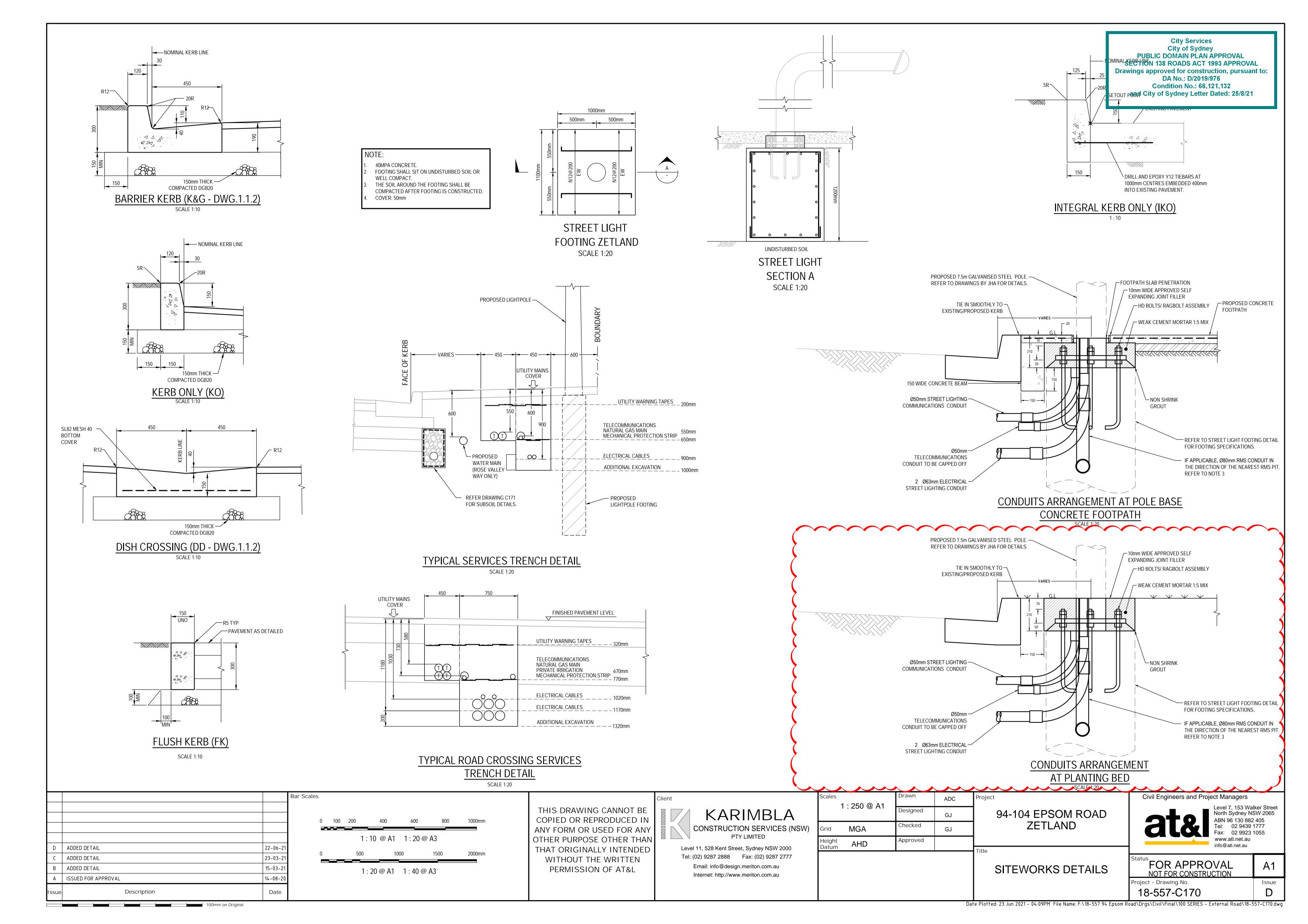

Ba	ar Scales	Client	Scales 1:20 @ A1	Drawn ADC	Project	Civil Engineers and Project Managers
	0 500 1000 1500 2000mm	ANY FORM OR USED FOR ANY	TION SERVICES (NSW) 1:100 @ A1 Grid MGA	Designed GJ Checked GJ	94-104 EPSOM ROAD ZETLAND	Level 7, 153 Walker Street North Sydney NSW 2065 ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055
A ISSUED FOR APPROVAL 14-08-20 Sue Description Date	1: 20 @ A1 1: 40 @ A3 0 2 4 6 8 10m 1: 100 @ A1 1: 200 @ A3	THAT ORIGINALLY INTENDED WITHOUT THE WRITTEN PERMISSION OF AT&I. Level 11, 528 Kent S Tel: (02) 9287 2888 Email: info@de	TY LIMITED eet, Sydney NSW 2000 Fax: (02) 9287 2777 gn.meriton.com.au /w.meriton.com.au	Approved Approved	Title ROSE VALLEY WAY CONTROL MC02 CROSS SECTIONS SHEET 6	Status FOR APPROVAL NOT FOR CONSTRUCTION Project - Drawing No. Issue 18-557-C140

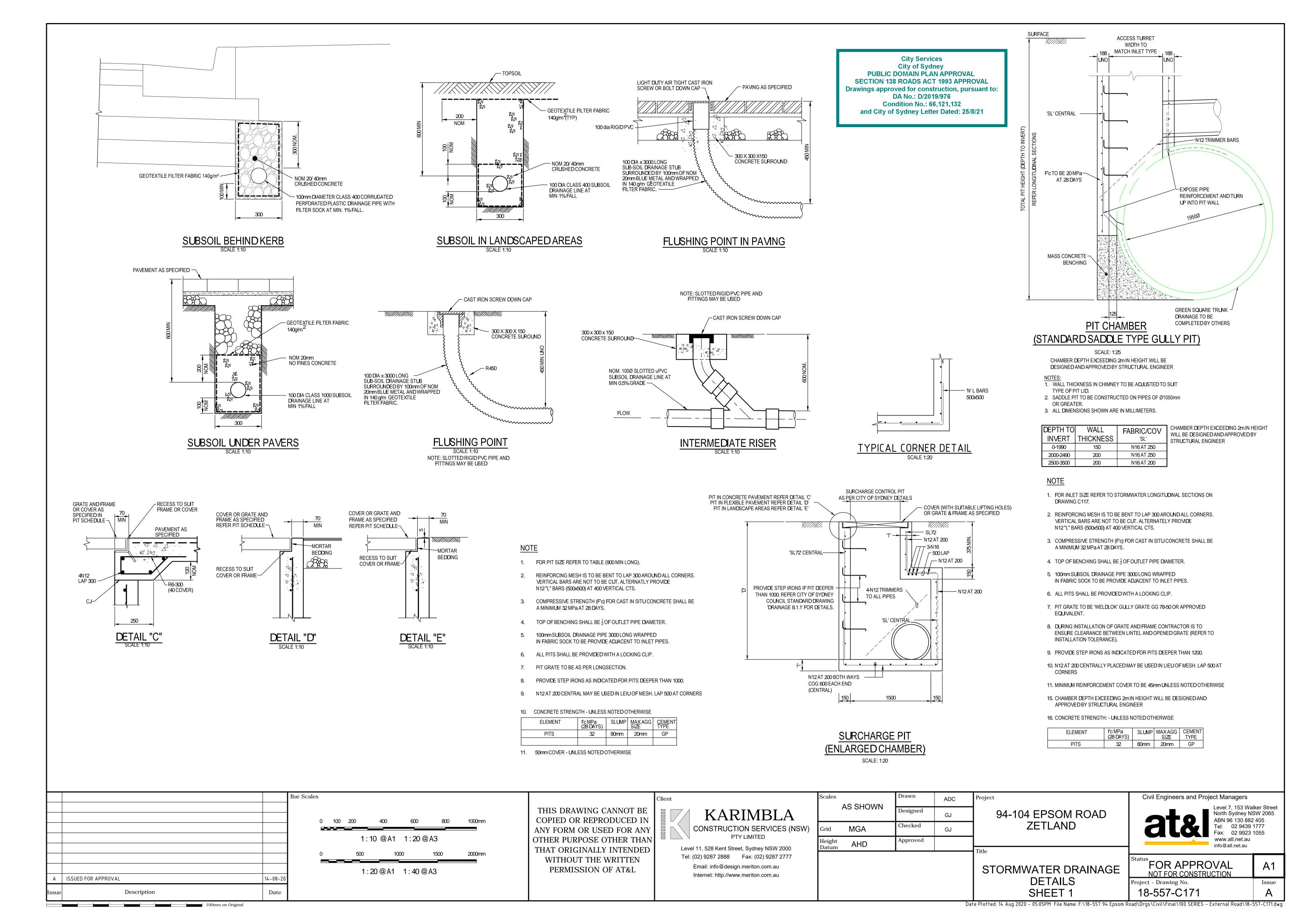


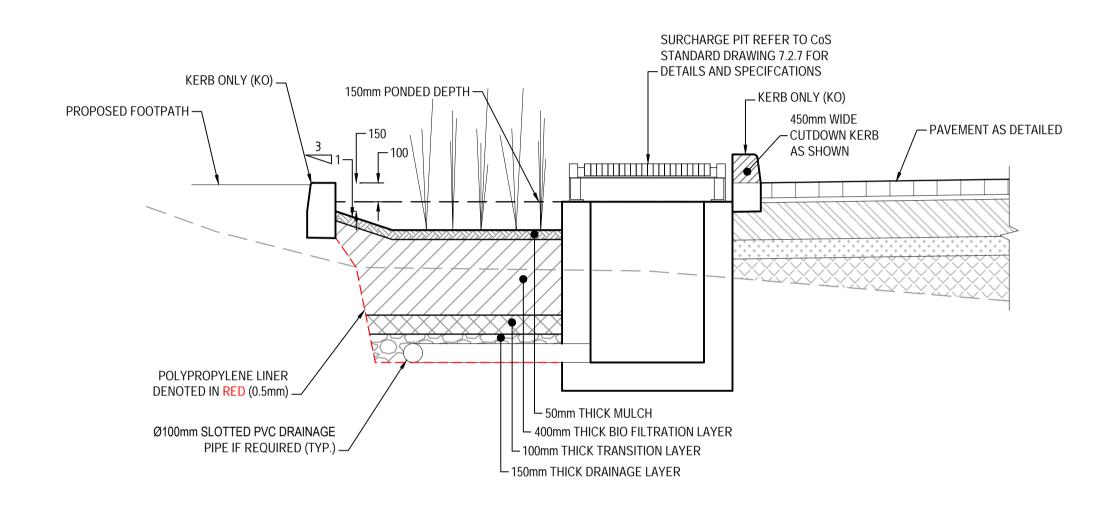


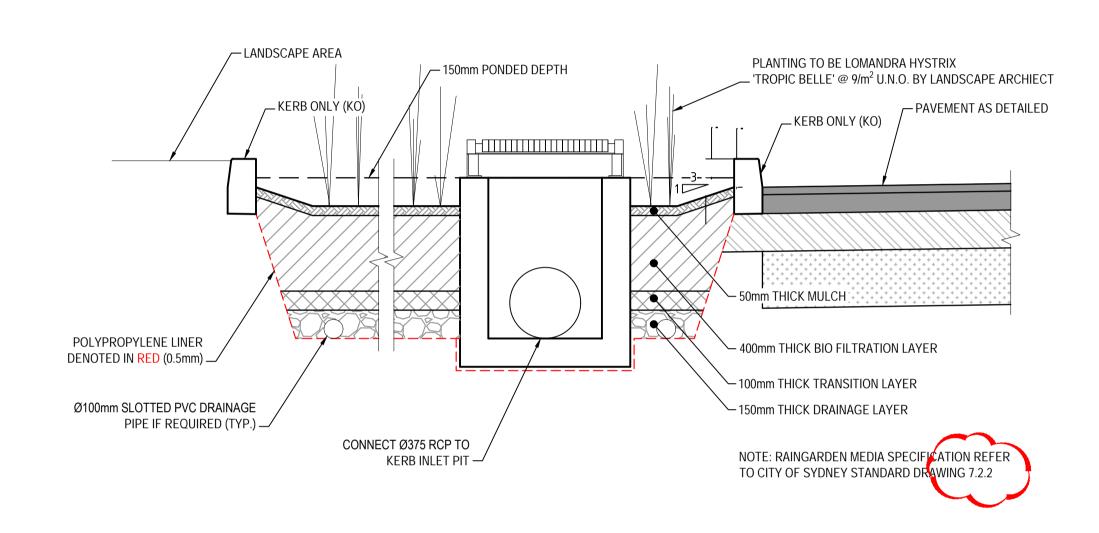

Bar Scales Scales 1:20 @ A1 Civil Engineers and Project Managers ADC Project 1:100 @ A1 Level 7, 153 Walker Street North Sydney NSW 2065 ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055 www.atl.net.au THIS DRAWING CANNOT BE KARIMBLA Designed 94-104 EPSOM ROAD GJ COPIED OR REPRODUCED IN ZETLAND CONSTRUCTION SERVICES (NSW) MGA ANY FORM OR USED FOR ANY 1:20 @ A1 1:40 @ A3 PTY LIMITED OTHER PURPOSE OTHER THAN AHD info@atl.net.au Level 11, 528 Kent Street, Sydney NSW 2000 THAT ORIGINALLY INTENDED ROSE VALLEY WAY Tel: (02) 9287 2888 Fax: (02) 9287 2777 FOR APPROVAL WITHOUT THE WRITTEN **A1** Email: info@design.meriton.com.au CONTROL MC02 PERMISSION OF AT&L NOT FOR CONSTRUCTION Internet: http://www.meriton.com.au 1:100@A1 1:200@A3 **CROSS SECTIONS** ISSUED FOR APPROVAL 14-08-20 Project - Drawing No. Issue SHEET 7 18-557-C141 Date Description Date Plotted: 14 Aug 2020 - 05:04PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES - External Road\18-557-C141.dwg

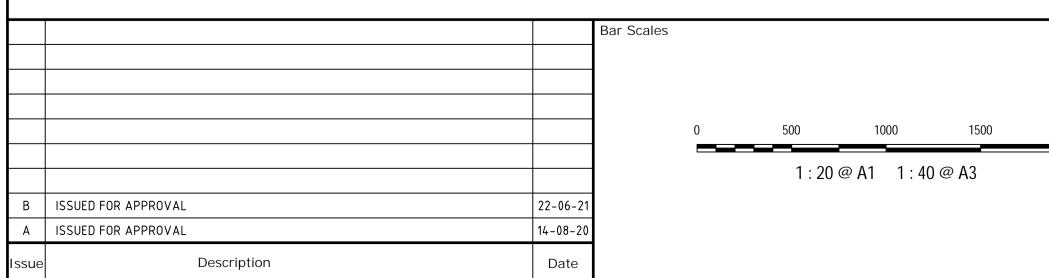












TYPICAL RAIN GARDEN INLET DETAIL SCALE 1:20 NOTE: RAINGARDEN MEDIA SPECIFICATION REFER TO CITY OF SYDNEY STANDARD DRAWING 7.2.2

TYPICAL RAIN GARDEN OUTLET DETAIL SCALE 1:20

THIS DRAWING CANNOT BE COPIED OR REPRODUCED IN ANY FORM OR USED FOR ANY OTHER PURPOSE OTHER THAN THAT ORIGINALLY INTENDED WITHOUT THE WRITTEN PERMISSION OF AT&L

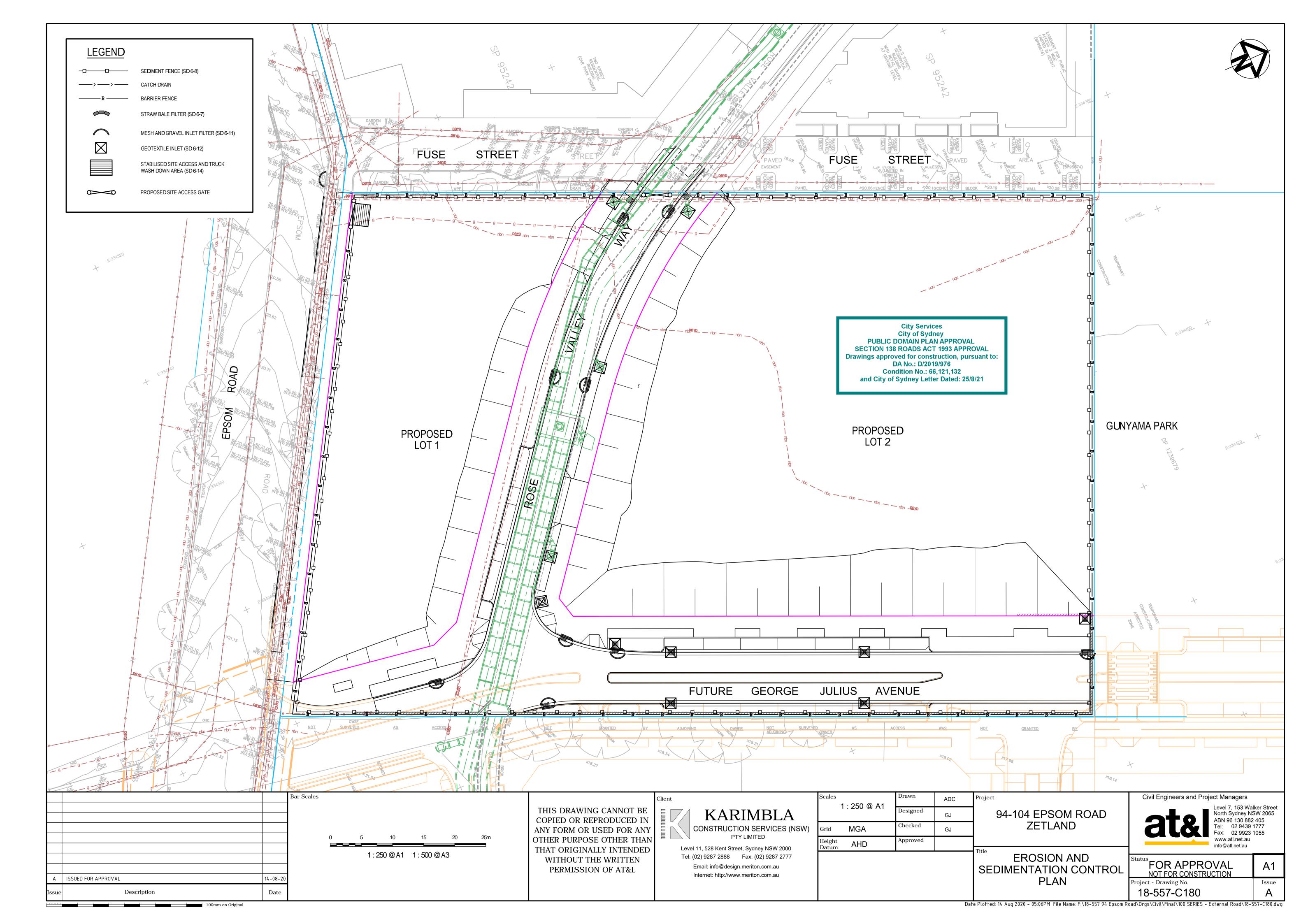
KARIMBLA CONSTRUCTION SERVICES (NSW) PTY LIMITED

Level 11, 528 Kent Street, Sydney NSW 2000 Tel: (02) 9287 2888 Fax: (02) 9287 2777 Email: info@design.meriton.com.au Internet: http://www.meriton.com.au

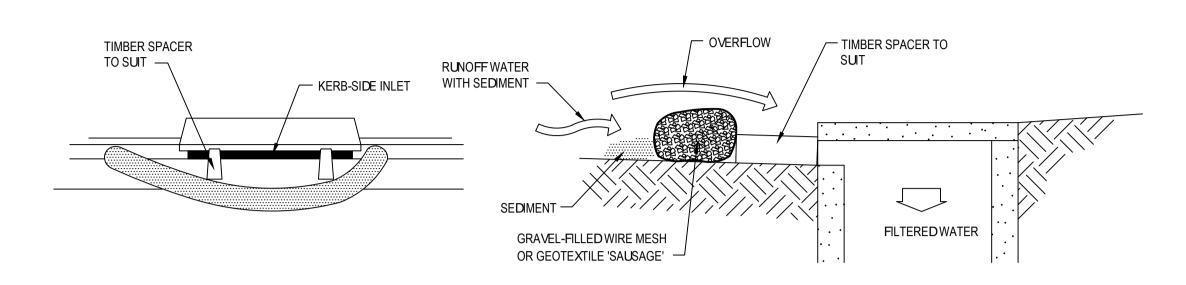
Scales	AS SHOWN	Drawn	ADC	Pro
		Designed	GJ	
Grid	MGA	Checked	GJ	
Height Datum	AHD	Approved		

94-104 EPSOM ROAD ZETLAND

Civil Engineers and Project Managers Level 7, 153 Walker Street North Sydney NSW 2065 ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055 www.atl.net.au info@atl.net.au

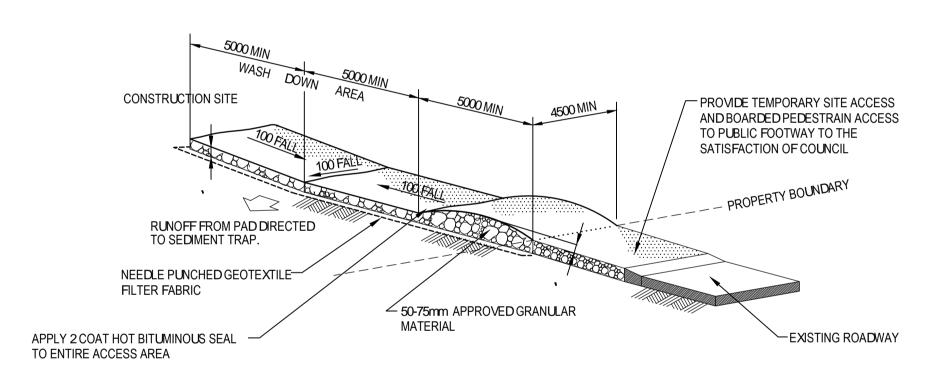

Issue

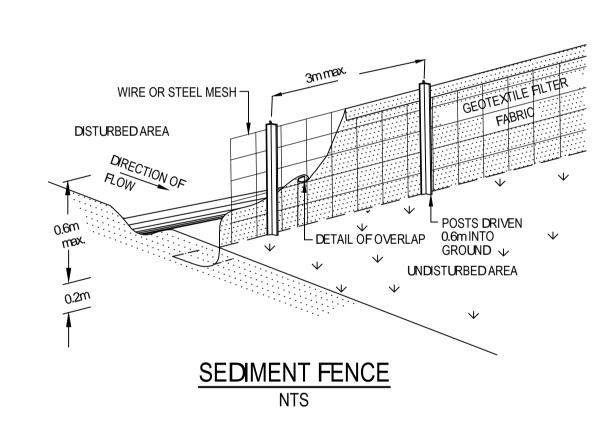
STORMWATER DRAINAGE **DETAILS** SHEET 2


FOR APPROVAL NOT FOR CONSTRUCTION Project - Drawing No. 18-557-C172

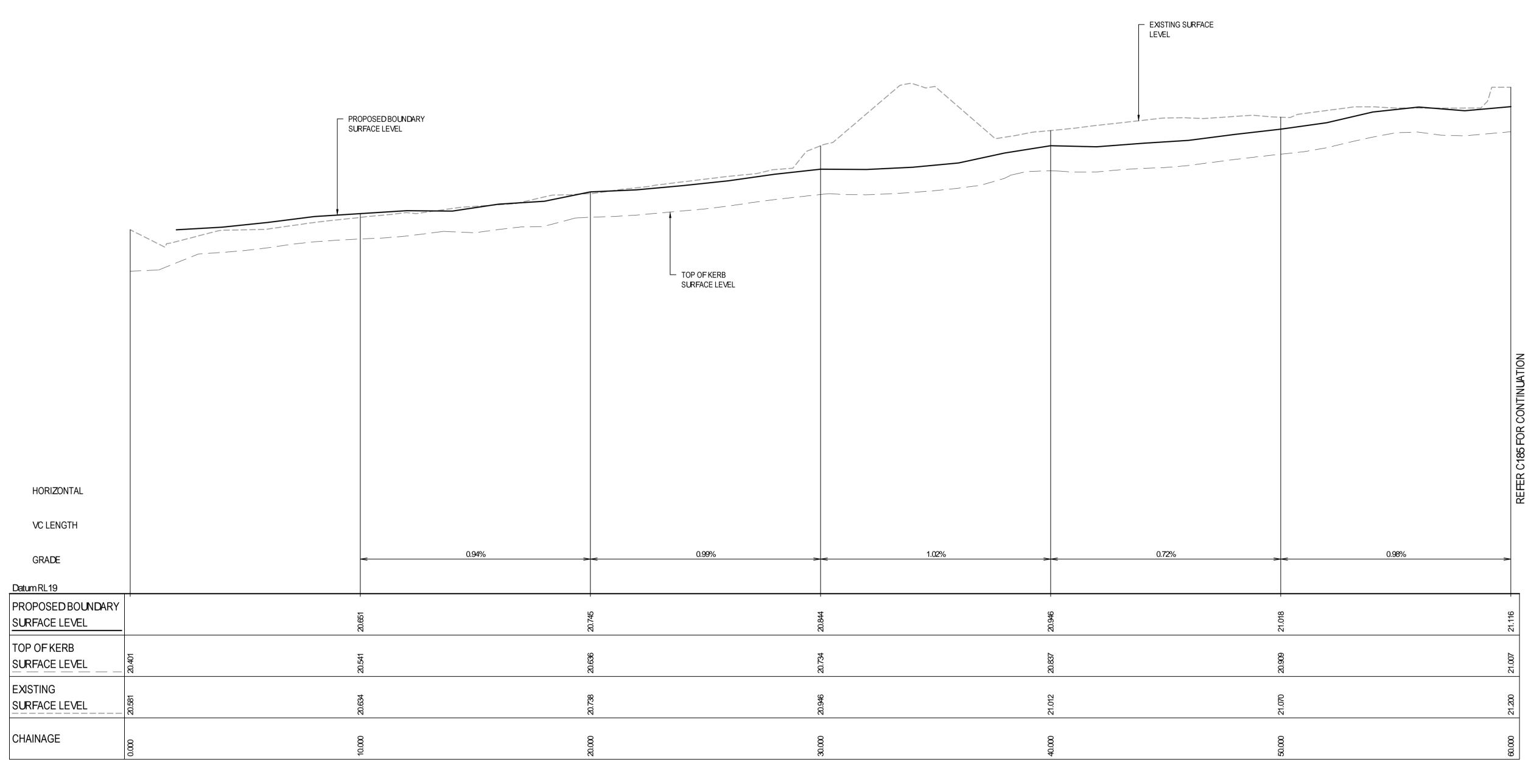
100mm on Original

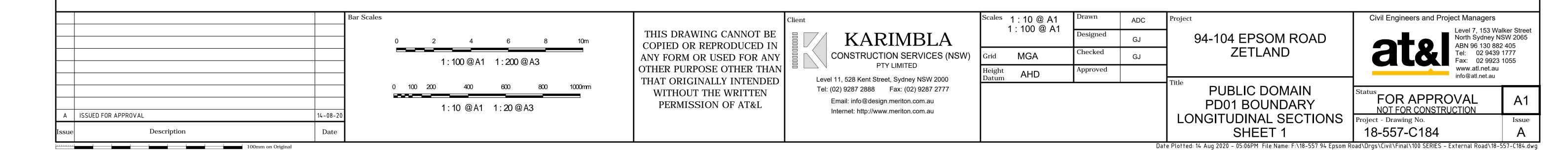
Date Plotted: 23 Jun 2021 - 04:12PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES - External Road\18-557-C172.dwg

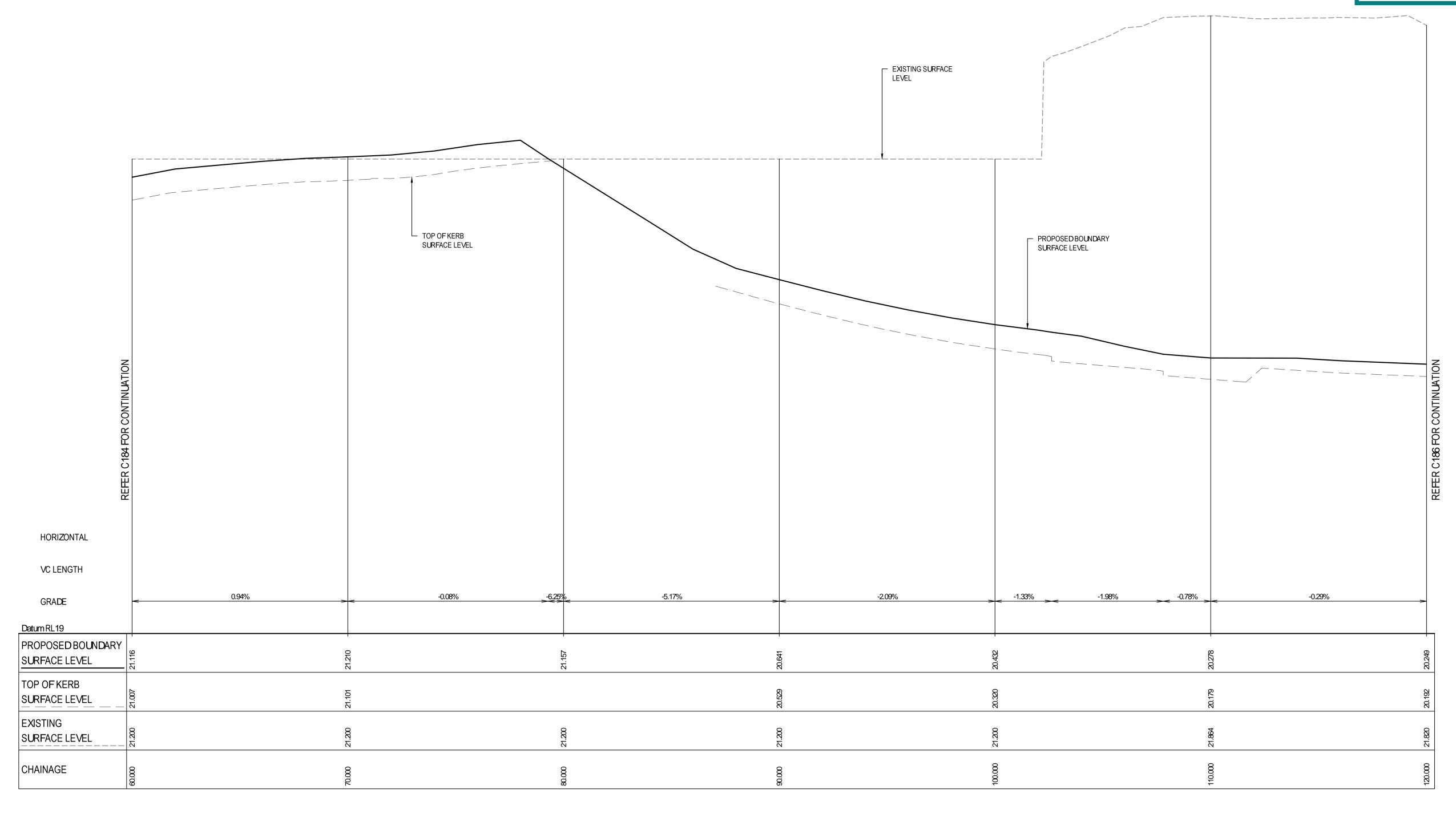




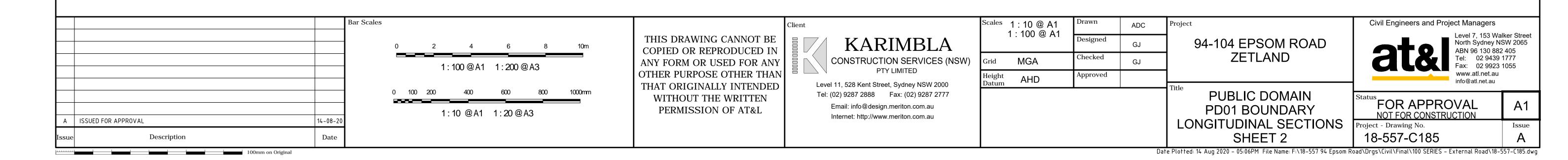
MESH AND GRAVEL INLET FILTER

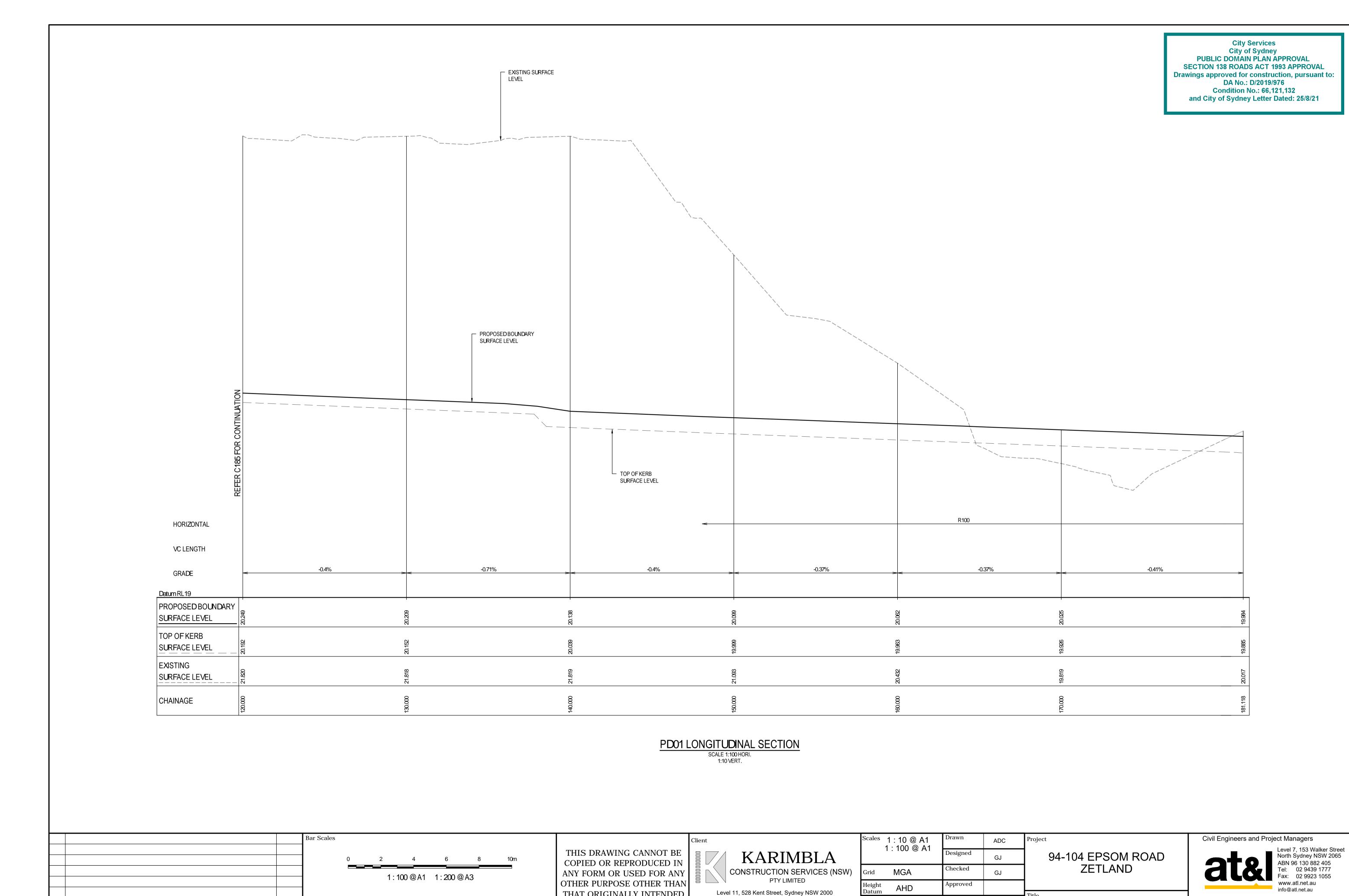

NTS


STABILISED SITE ACCESS AND TRUCK WASH DOWN AREA



B	ar Scales	Client	Scales	Drawn	ADC	Project	Civil Engineers and Project Managers	
	THIS DRAWING CANNOT BE		AS SHOWN	Designed	GJ	94-104 EPSOM ROAD	Level 7, 153 Wa North Sydney N	alker Street NSW 2065
	COPIED OR REPRODUCED IN ANY FORM OR USED FOR ANY	CONSTRUCTION SERVICES (NSW)	Grid MGA	Checked	GJ	ZETLAND	ABN 96 130 88 Tel: 02 9439 Fax: 02 9923	
	OTHER PURPOSE OTHER THA THAT ORIGINALLY INTENDED		Height Datum AHD	Approved		Title	www.atl.net.au info@atl.net.au	u
	WITHOUT THE WRITTEN PERMISSION OF AT&L	Tel: (02) 9287 2888 Fax: (02) 9287 2777 Email: info@design.meriton.com.au Internet: http://www.meriton.com.au				EROSION AND SEDIMENTATION CONTROL	FOR APPROVAL NOT FOR CONSTRUCTION	A1
A ISSUED FOR APPROVAL 14-08-20 Issue Description Date		internet nip,,, and internet night				DETAILS	Project - Drawing No. 18-557-C181	Issue A




PD01 LONGITUDINAL SECTION SCALE 1:100 HORI. 1:10 VERT.

PD01 LONGITUDINAL SECTION SCALE 1:100 HORI. 1:10 VERT.

THAT ORIGINALLY INTENDED

WITHOUT THE WRITTEN

PERMISSION OF AT&L

Tel: (02) 9287 2888 Fax: (02) 9287 2777

Email: info@design.meriton.com.au

Internet: http://www.meriton.com.au

PUBLIC DOMAIN

PD01 BOUNDARY

SHEET 3

LONGITUDINAL SECTIONS

FOR APPROVAL

NOT FOR CONSTRUCTION

Project - Drawing No.

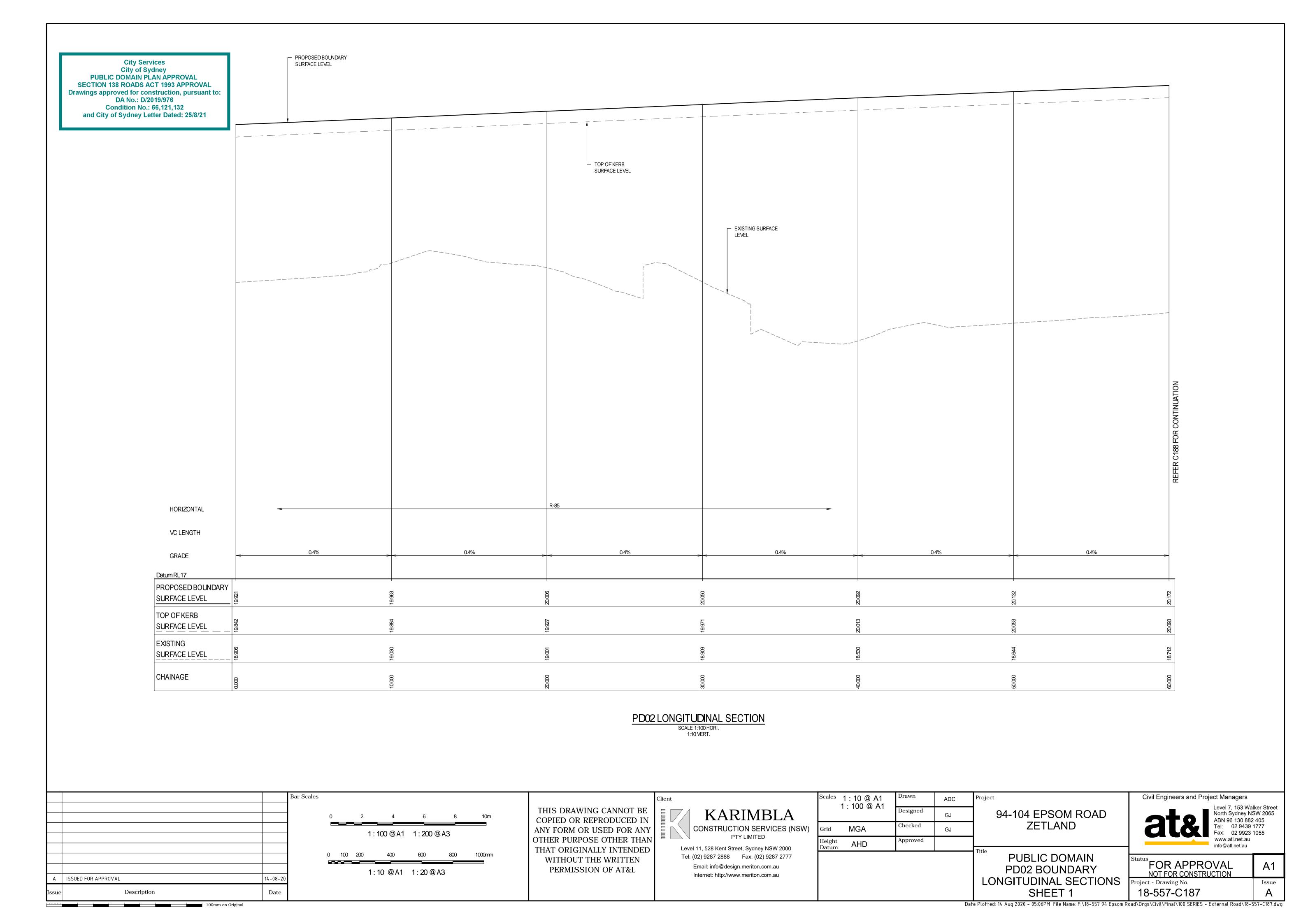
Date Plotted: 14 Aug 2020 – 05:06PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES – External Road\18-557-C186.dwg

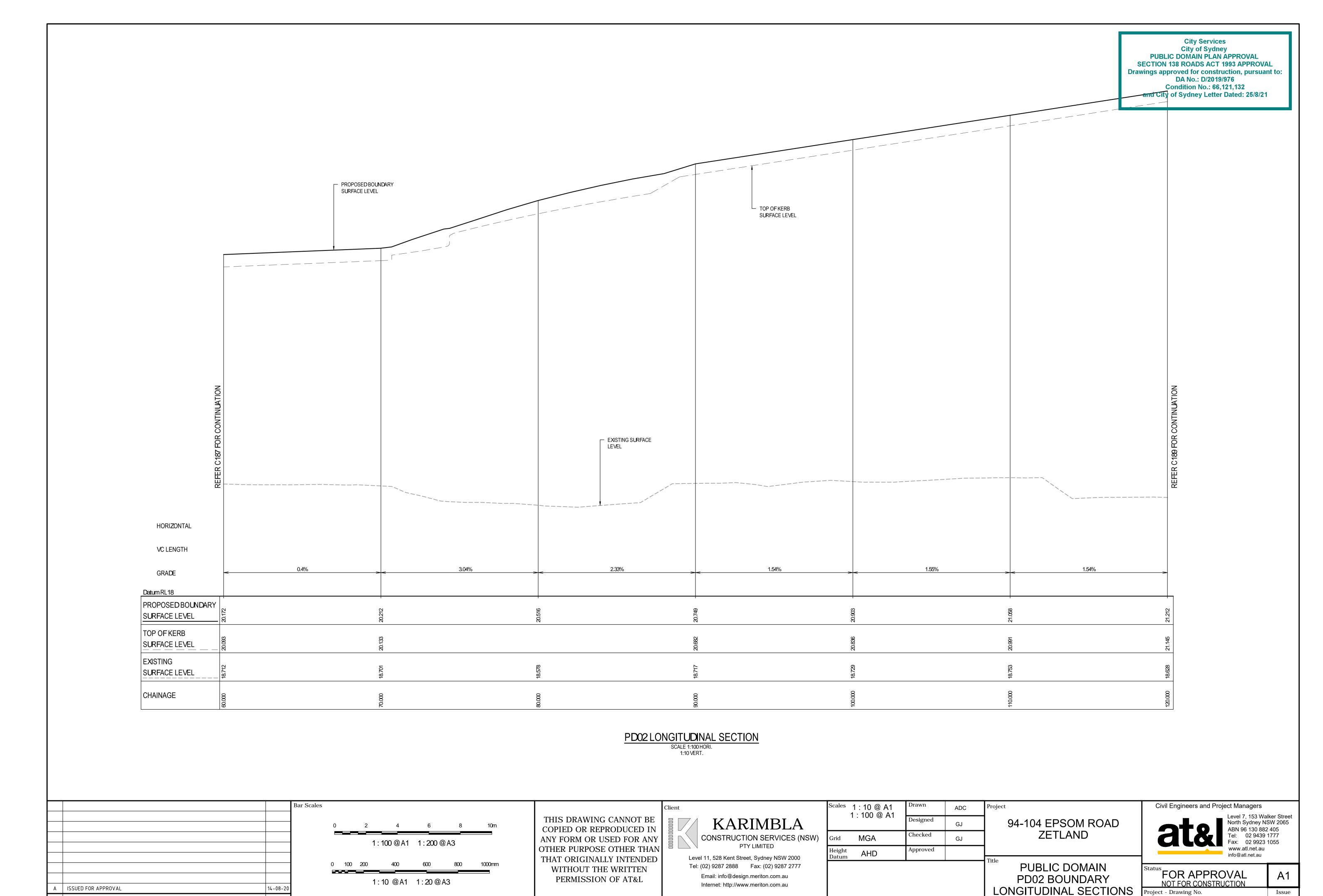
18-557-C186

A1

Issue

600


1:10 @A1 1:20 @A3


14-08-20

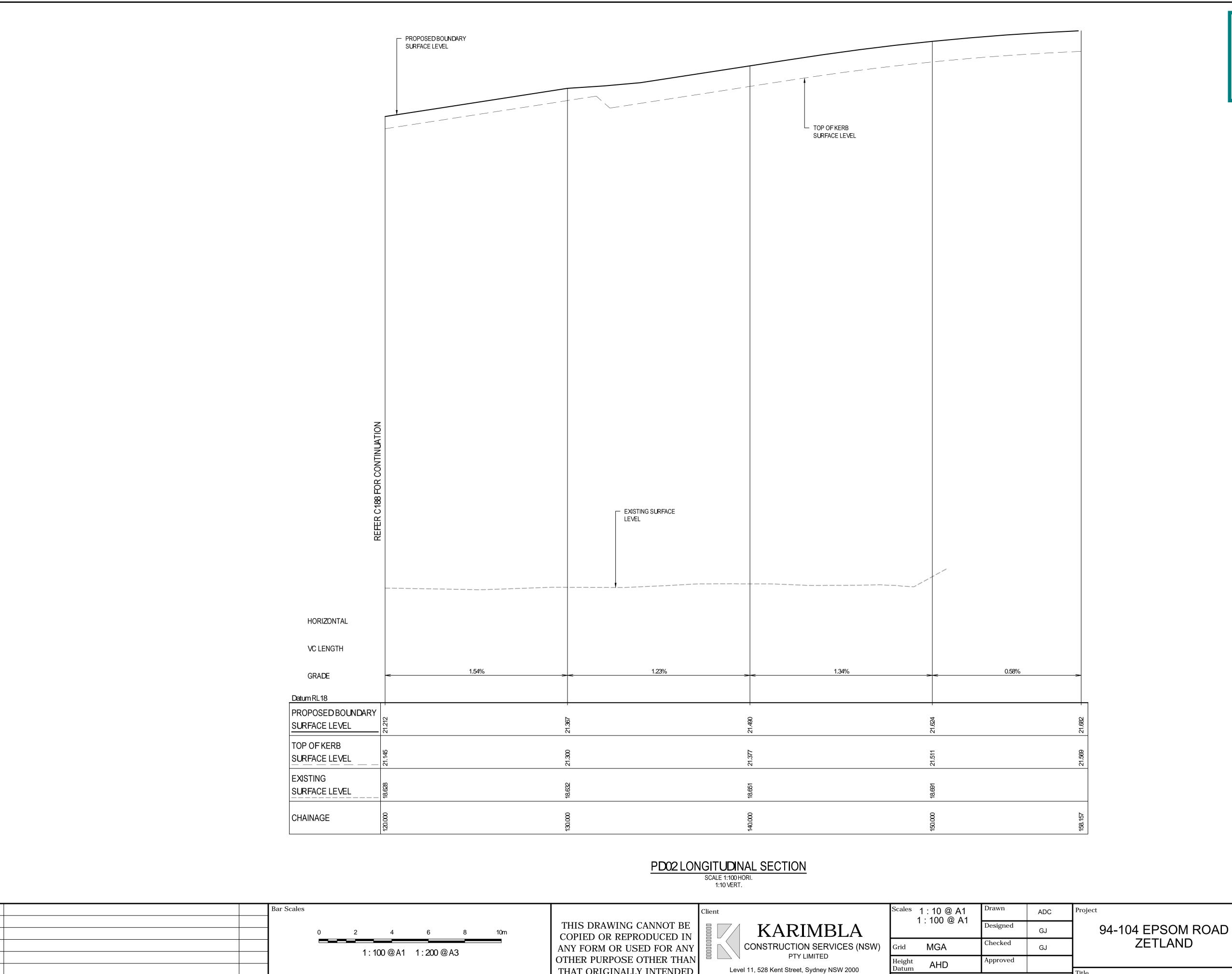
Date

ISSUED FOR APPROVAL

Description

Date

Description

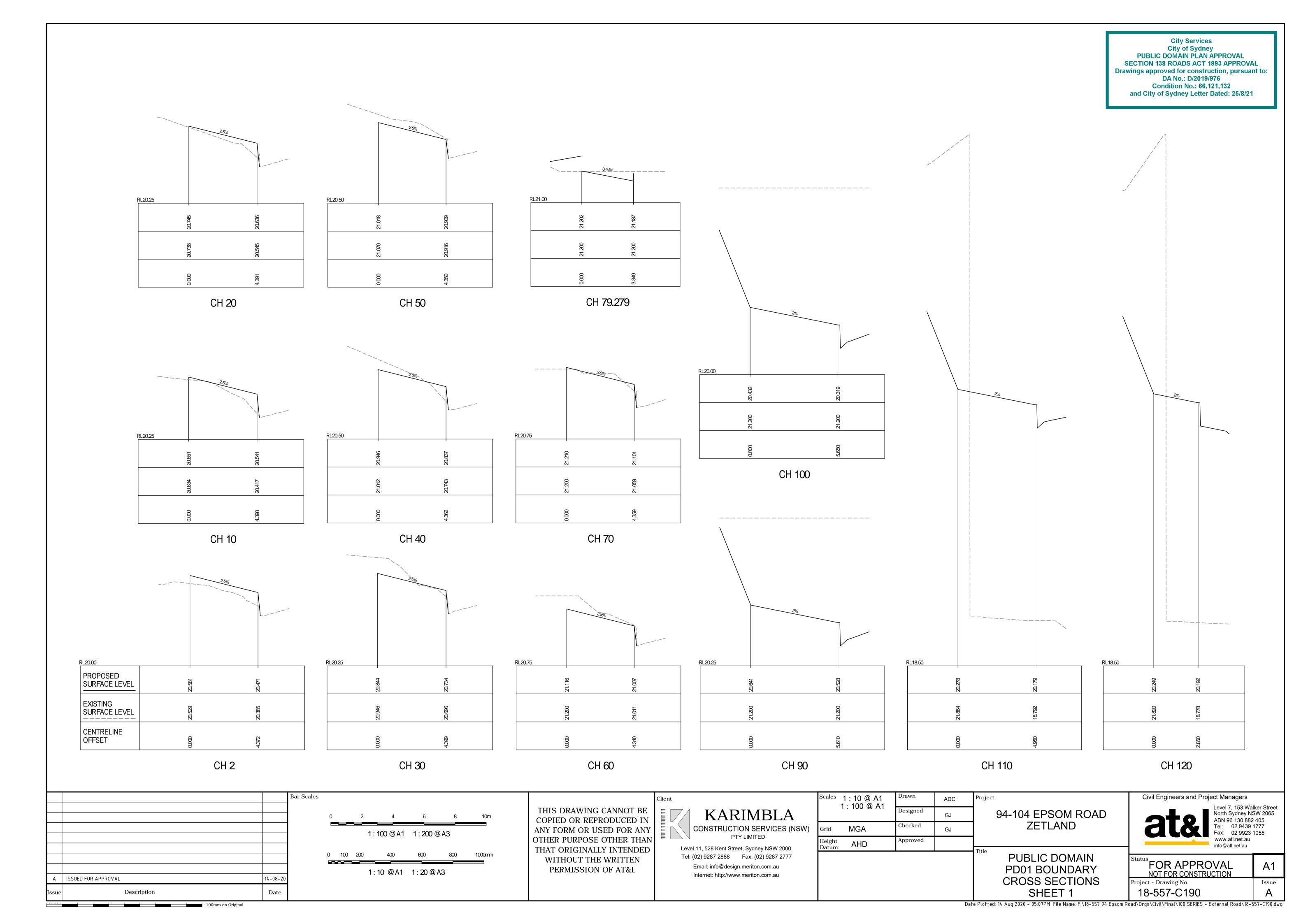

Project - Drawing No.

Date Plotted: 14 Aug 2020 – 05:06PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES – External Road\18-557-C188.dwg

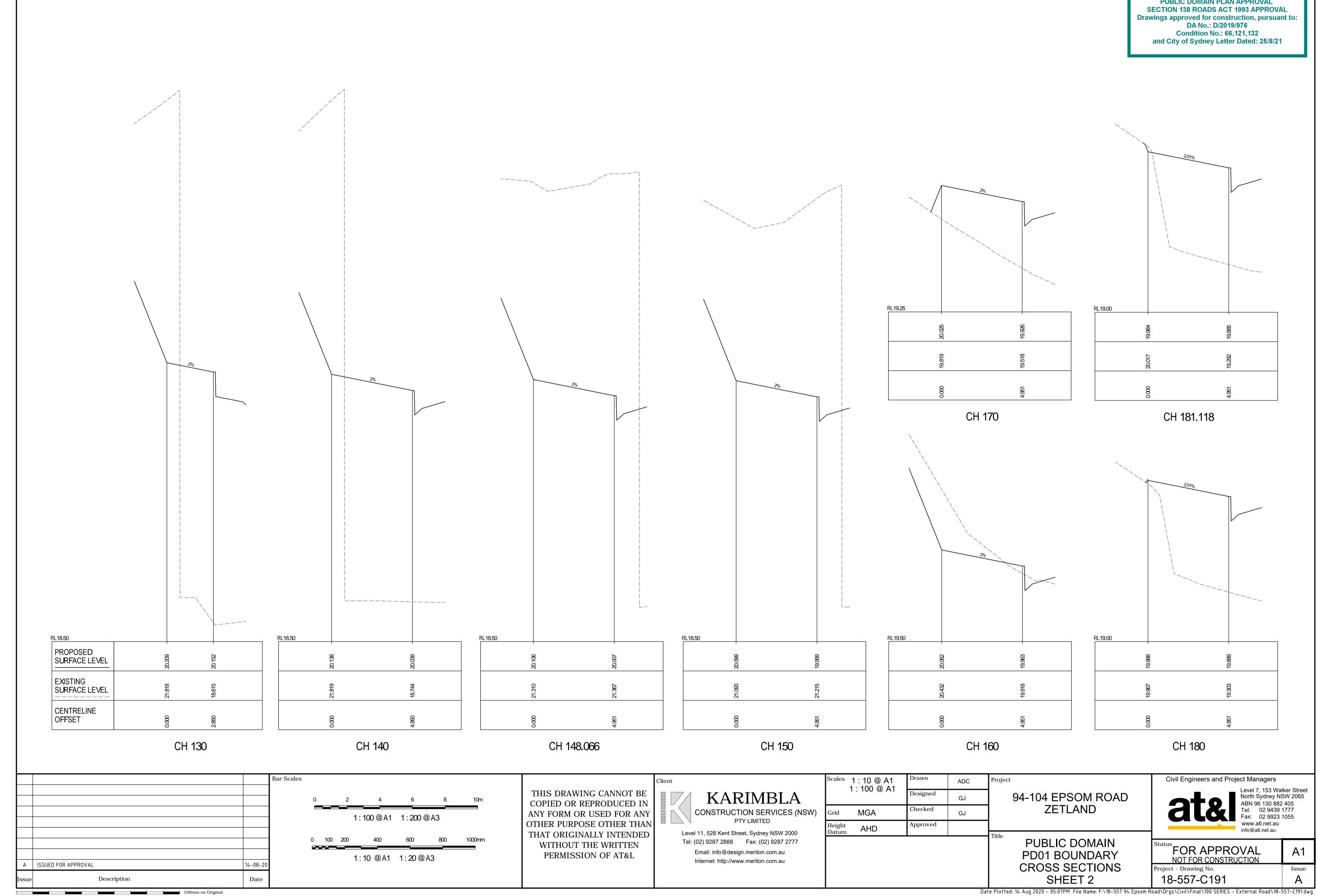
SHEET 2

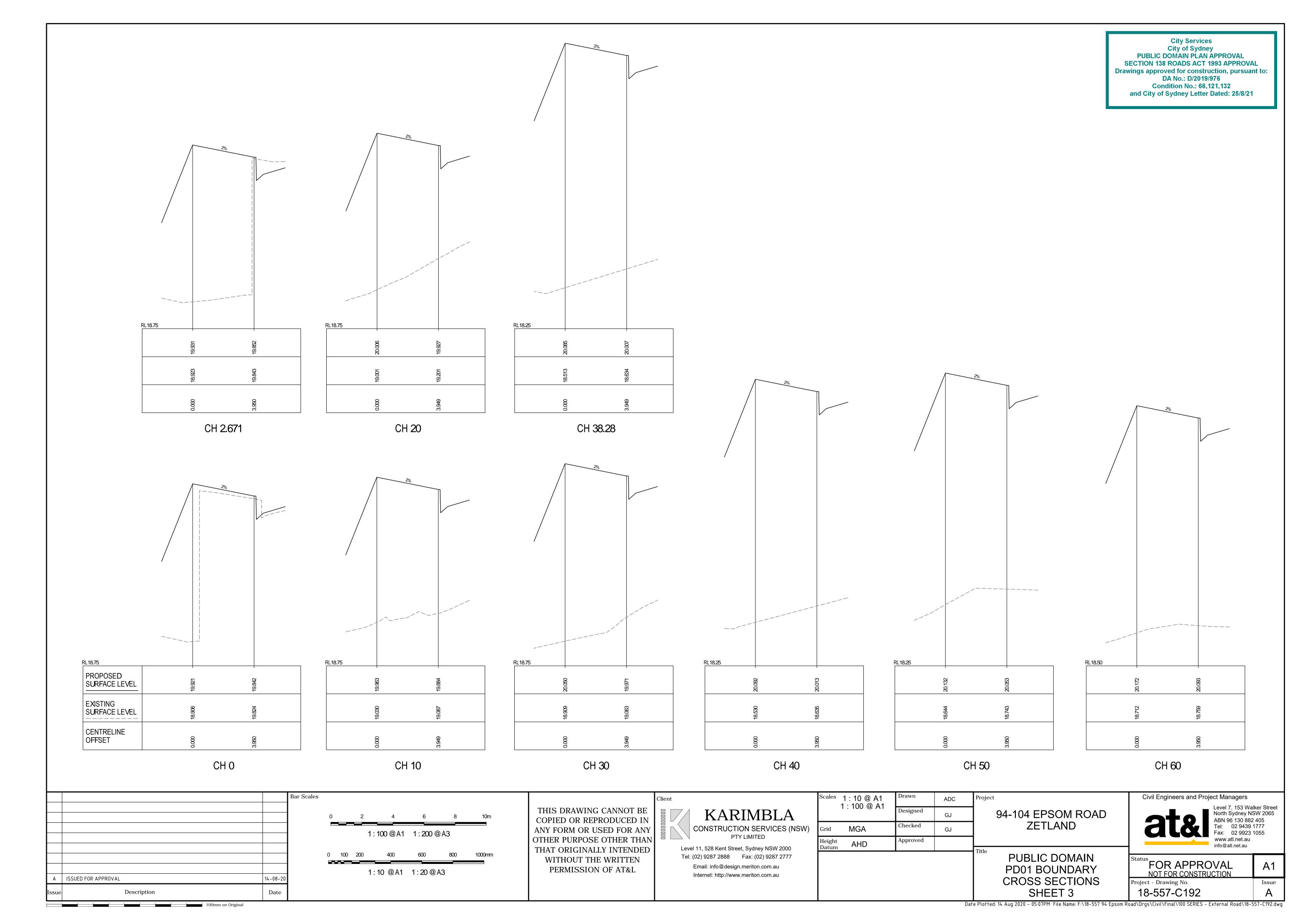
18-557-C188

Issue

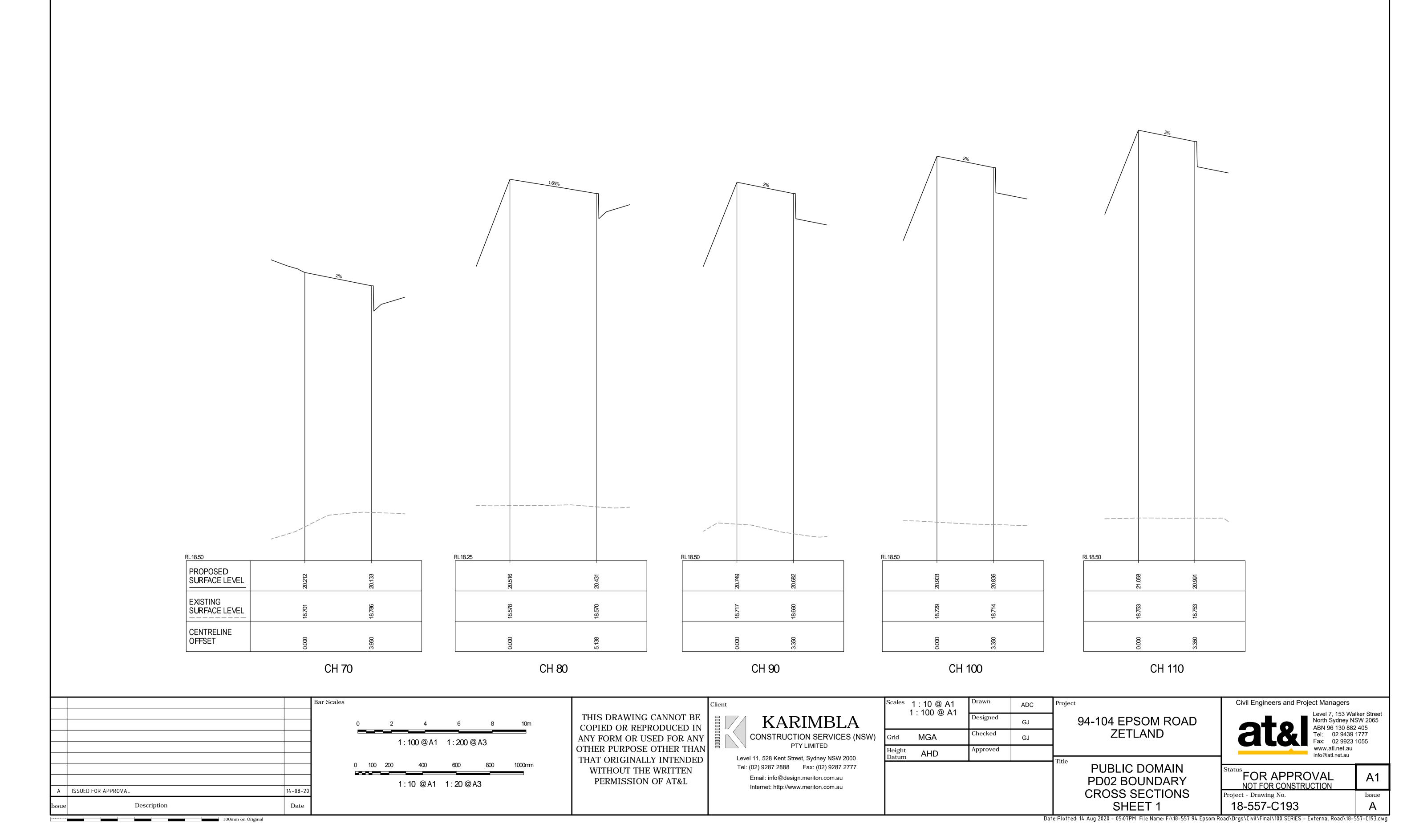


ZETLAND Level 11, 528 Kent Street, Sydney NSW 2000 THAT ORIGINALLY INTENDED 600 PUBLIC DOMAIN Tel: (02) 9287 2888 Fax: (02) 9287 2777 WITHOUT THE WRITTEN Email: info@design.meriton.com.au PD02 BOUNDARY PERMISSION OF AT&L 1:10 @A1 1:20 @A3 Internet: http://www.meriton.com.au ISSUED FOR APPROVAL 14-08-20 LONGITUDINAL SECTIONS SHEET 3 Date Description Date Plotted: 14 Aug 2020 - 05:07PM File Name: F:\18-557 94 Epsom Road\Drgs\Civil\Final\100 SERIES - External Road\18-557-C189.dwg

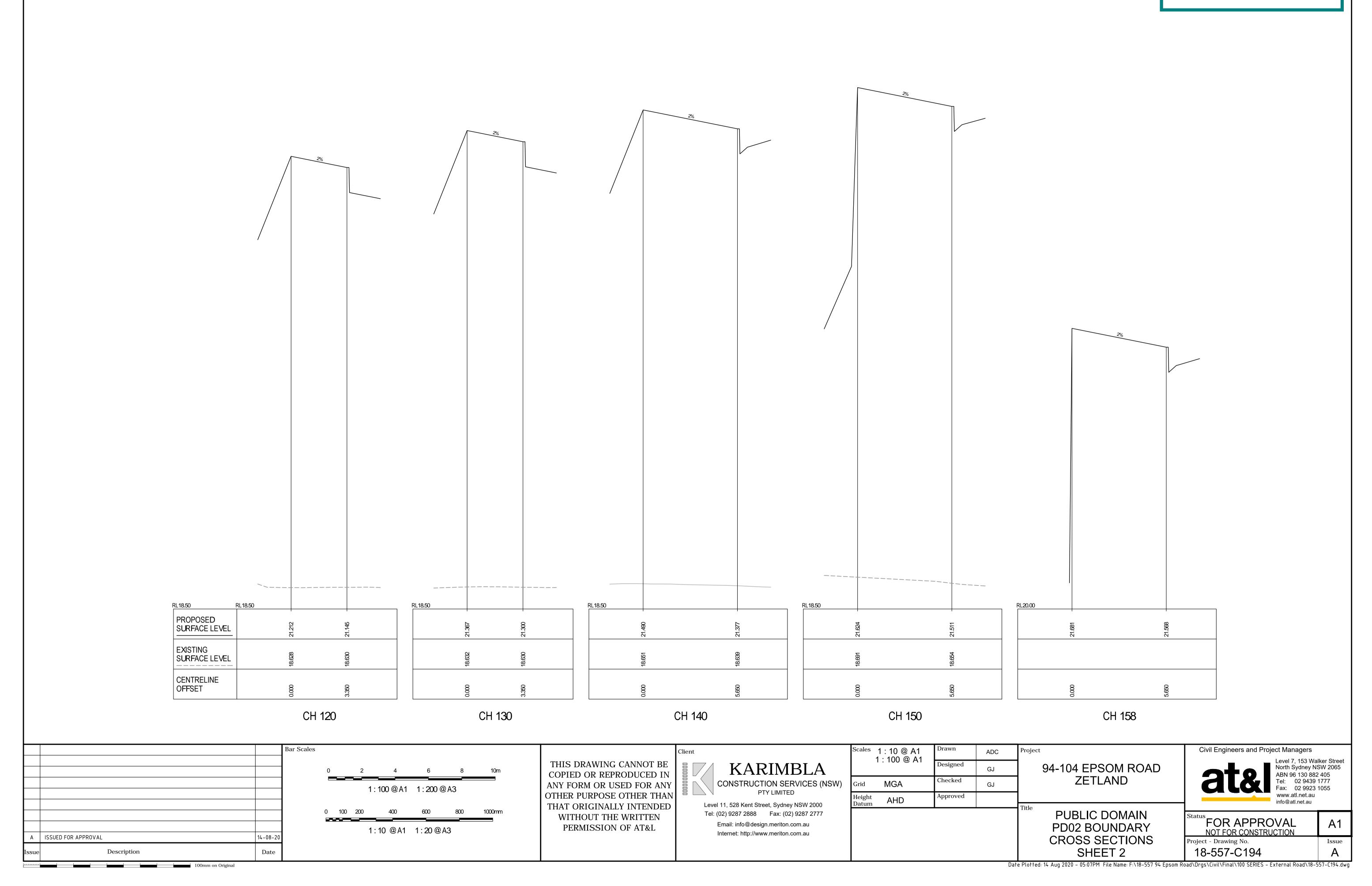

Civil Engineers and Project Managers

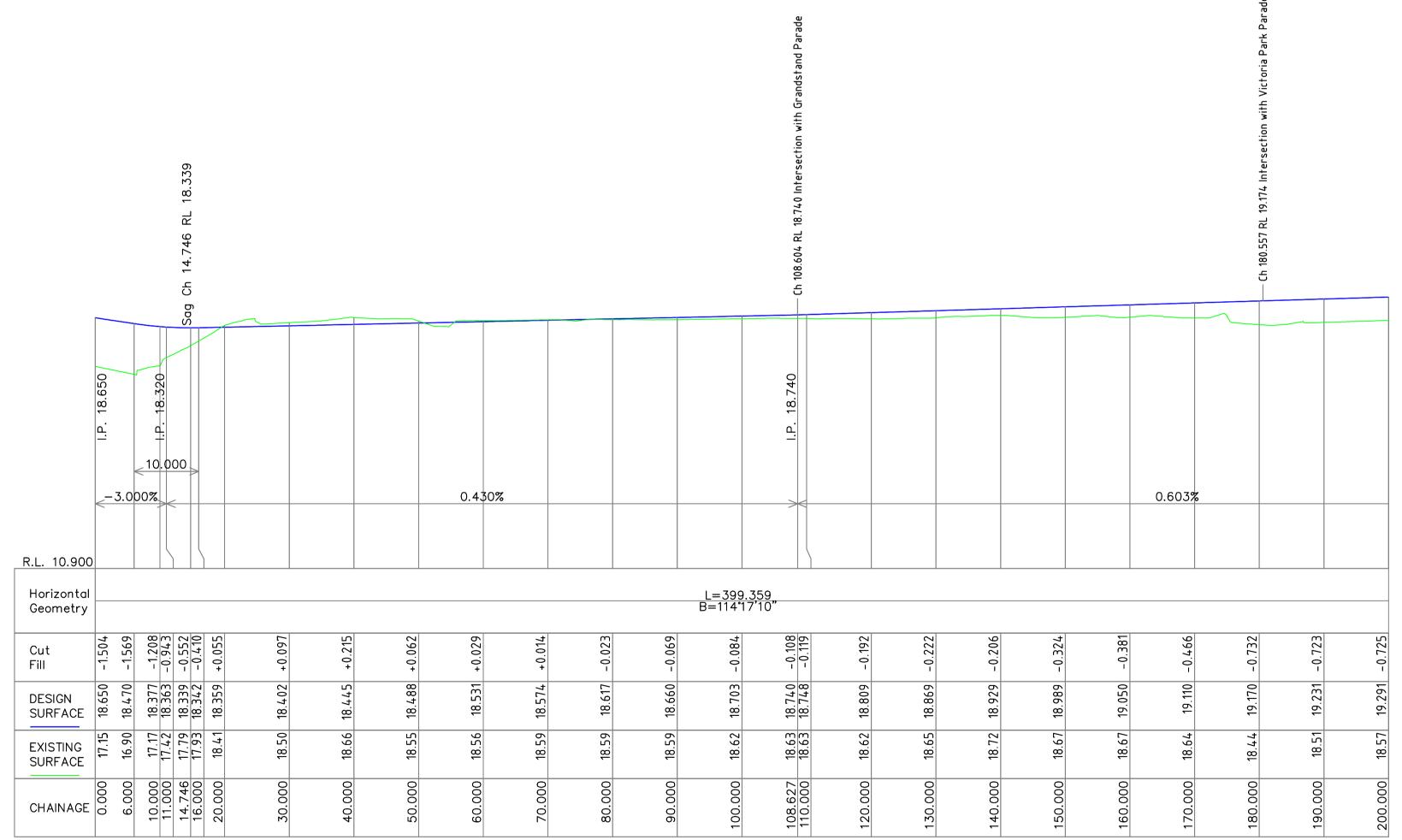

Level 7, 153 Walker Street North Sydney NSW 2065 ABN 96 130 882 405 Tel: 02 9439 1777 Fax: 02 9923 1055 www.atl.net.au info@atl.net.au

FOR APPROVAL NOT FOR CONSTRUCTION	A1
Project - Drawing No.	Issue
18-557-C189	Α

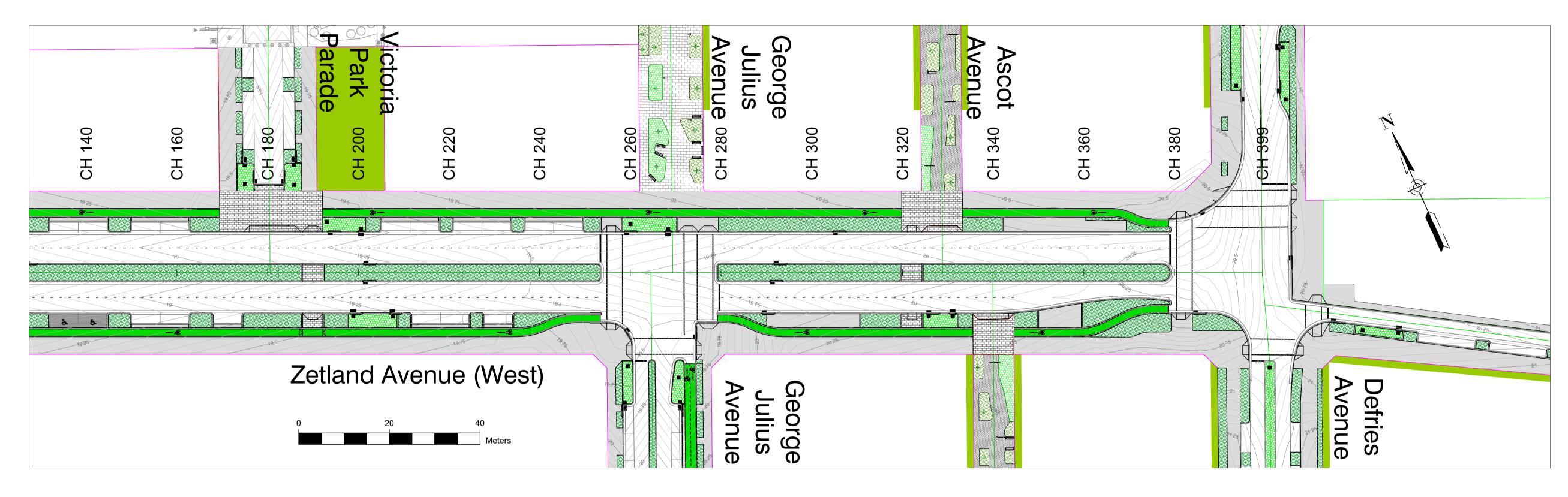


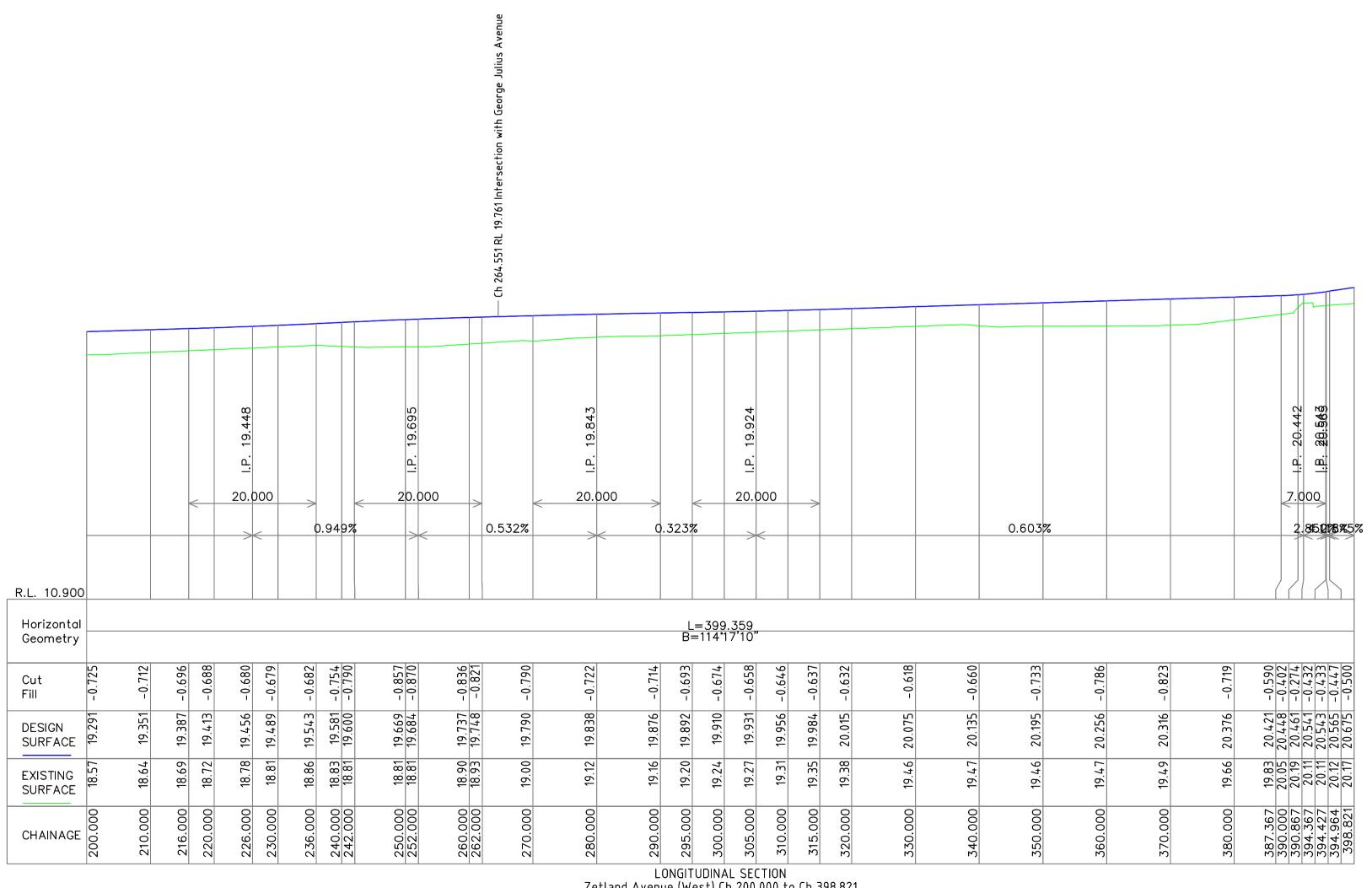
City Services City of Sydney
PUBLIC DOMAIN PLAN APPROVAL
SECTION 138 ROADS ACT 1993 APPROVAL DA No.: D/2019/976 Condition No.: 66,121,132 and City of Sydney Letter Dated: 25/8/21




City Services
City of Sydney
PUBLIC DOMAIN PLAN APPROVAL
SECTION 138 ROADS ACT 1993 APPROVAL
Drawings approved for construction, pursuant to:
DA No.: D/2019/976
Condition No.: 66,121,132
and City of Sydney Letter Dated: 25/8/21

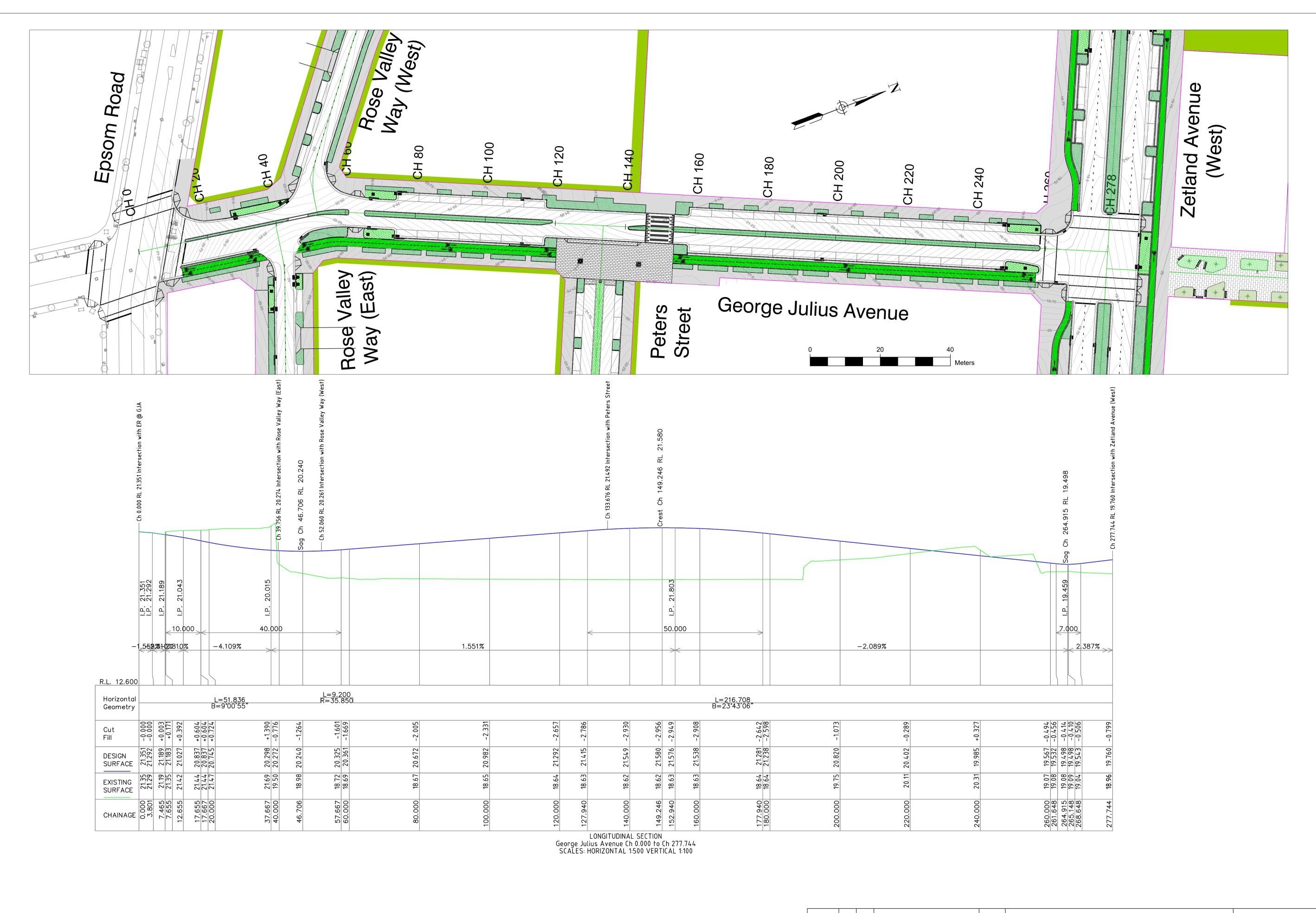
City Services
City of Sydney
PUBLIC DOMAIN PLAN APPROVAL
SECTION 138 ROADS ACT 1993 APPROVAL
Drawings approved for construction, pursuant to:
DA No.: D/2019/976
Condition No.: 66,121,132
and City of Sydney Letter Dated: 25/8/21



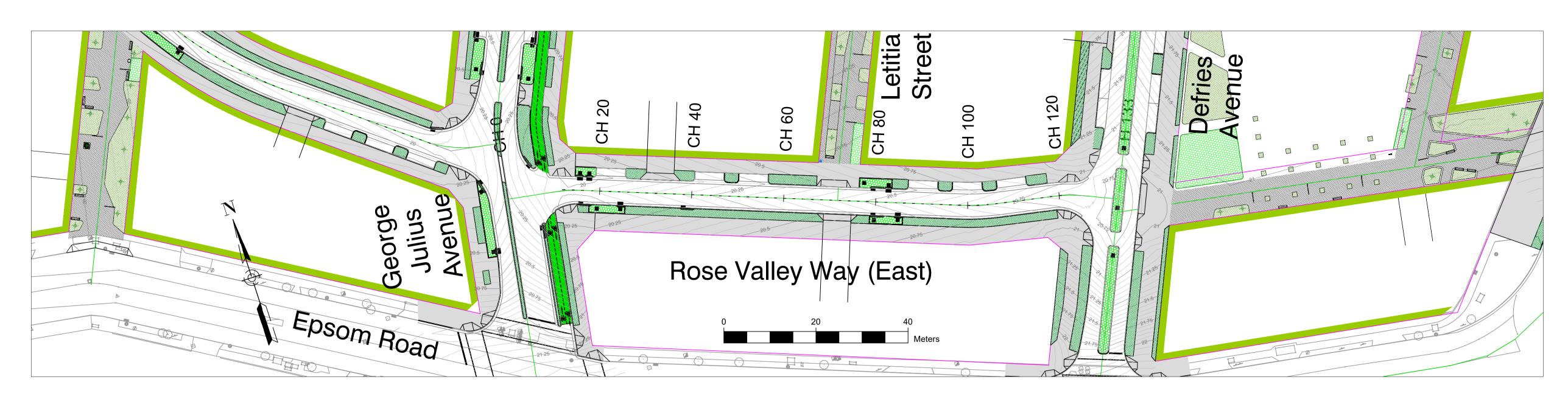


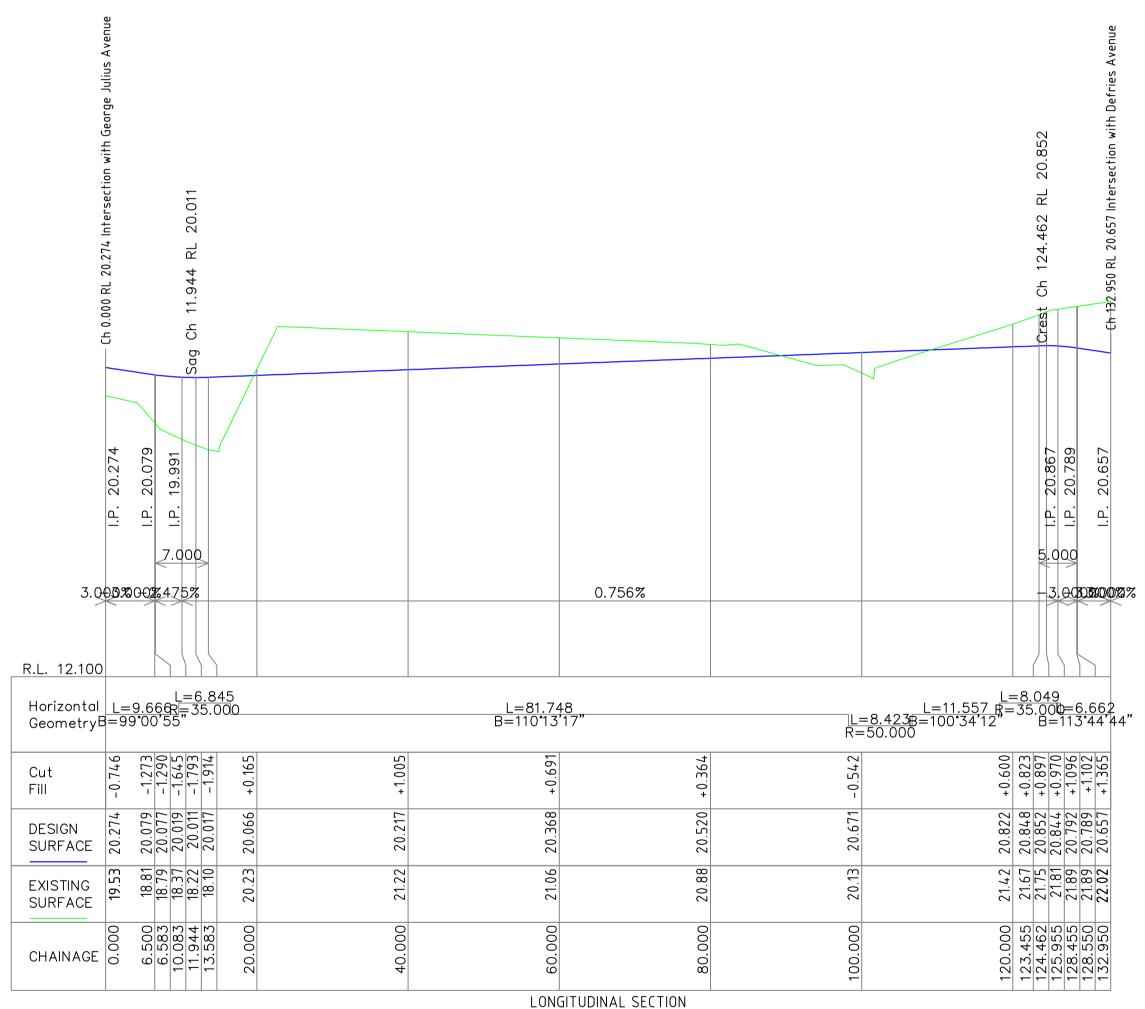
LONGITUDINAL SECTION Zetland Avenue (West) Ch 0.000 to Ch 200.000 SCALES: HORIZONTAL 1:500 VERTICAL 1:100

	5				ZETLAND	`	EST) LONGSEC) - 200	TIONS	CITYOFSYDNEY	(20	3
	3					EPSOM PAR	K PRECINCT				et <u>.</u>
21-09-2015	2	MS	100% Design	PS	INFR	ASTRUCTURE	CONCEPT DESIG	N	PRELIMINARY ONLY		Issue 2
23-12-2014	1	MS	80% Design	PS	Designed: MS	Checked: PS	SCALE: H = 1:500	PAPER:	Drawing No.		et No.
Date	No.	Ву	Amendments	Chckd	Drawn: MS	Approved: PS	V = 1:100	A1	E3-13/1164 - 701	10	F 2



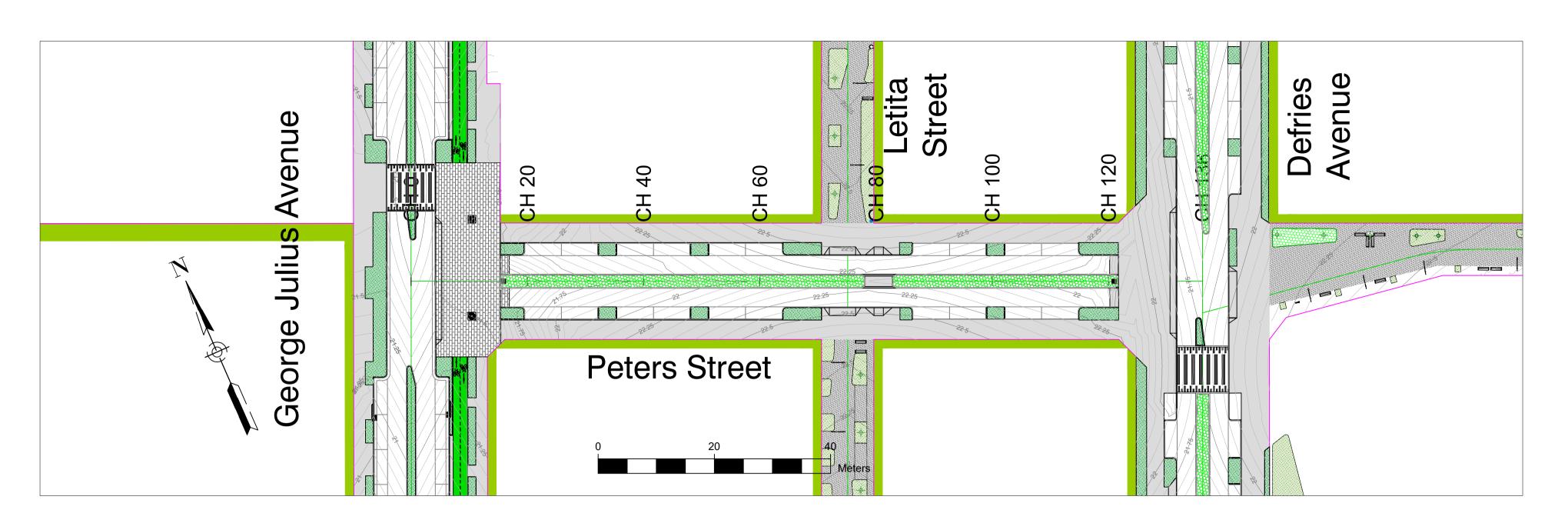
LONGITUDINAL SECTION
Zetland Avenue (West) Ch 200.000 to Ch 398.821
SCALES: HORIZONTAL 1:500 VERTICAL 1:100

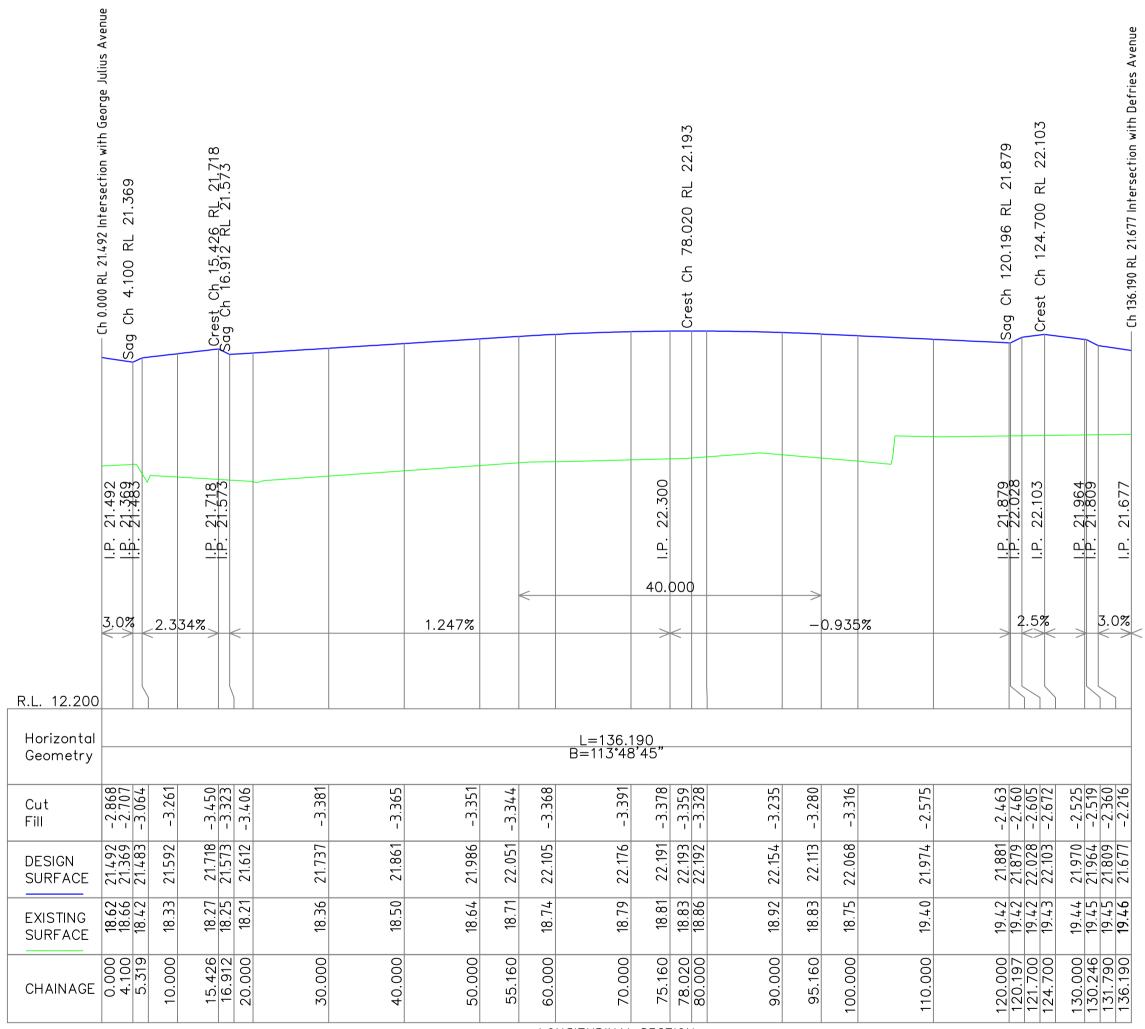

	5				ZETLAND	`	EST) LONGSEC	TIONS	
	4					CH 200	0 - 399		
	3					EPSOM PAR	K PRECINCT		
21-09-2015	2	MS	100% Design	PS	INFR	ASTRUCTURE (CONCEPT DESIGI	N	PRE
23-12-2014	1	MS	80% Design	PS	Designed: MS	Checked: PS	SCALE: H = 1:500	PAPER:	NOT Drav
Date	No.	Ву	Amendments	Chckd	Drawn: MS	Approved: PS	V = 1:100	A1	E3-



PRELIMINARY ONLY		Issue
OT TO BE USED FOR CONSTRUCT	ION	2
Prawing No.	Shee	t No.
3-13/1164 - 702	2 O	F 2

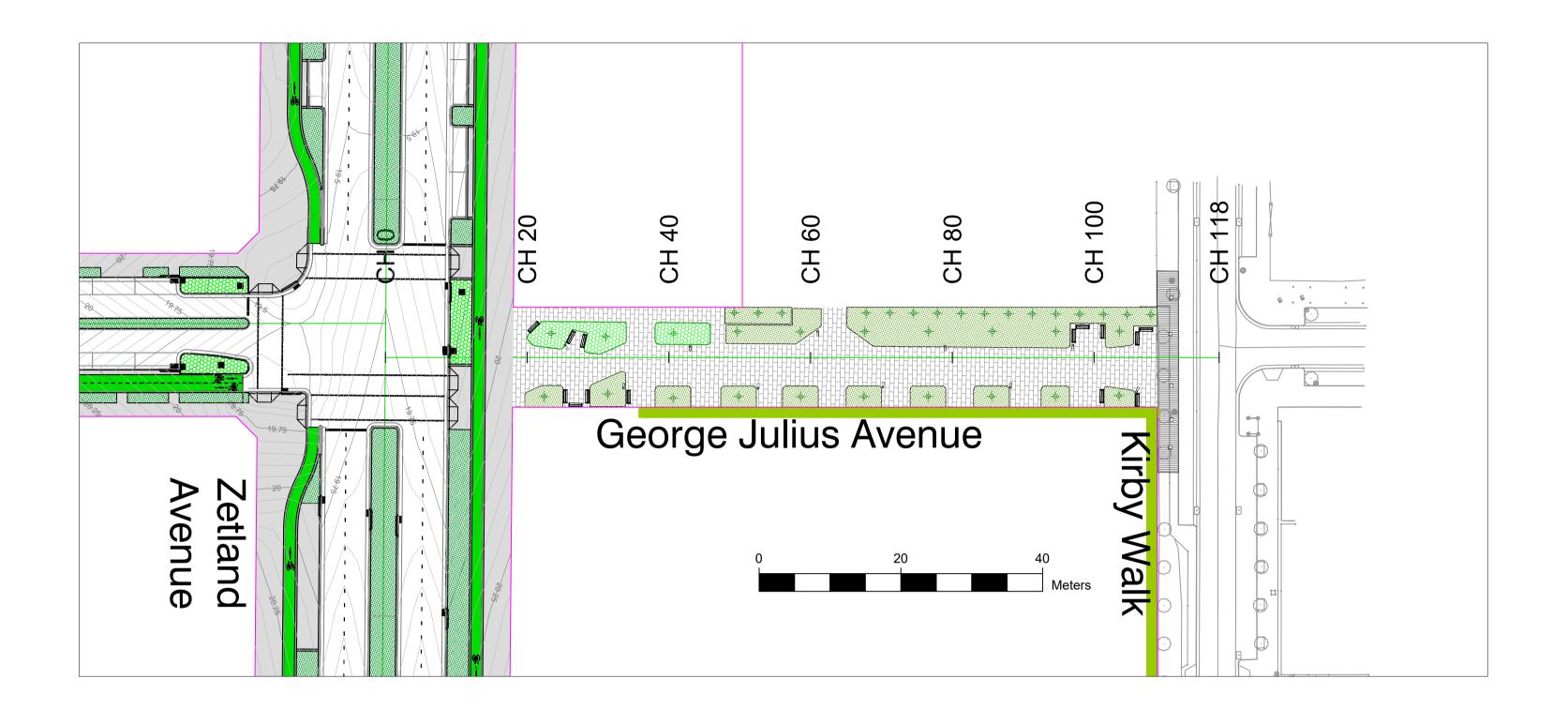
GEORGE JULIUS AVENUE LONGSECTION CITYOFSYDNEY 🚳 CH 0 - 278 **EPSOM PARK PRECINCT** INFRASTRUCTURE CONCEPT DESIGN Issue PRELIMINARY ONLY PS 21-09-2015 2 MS 100% Design 2 NOT TO BE USED FOR CONSTRUCTION PAPER: SCALE: 80% Design PS 23-12-2014 Designed: MS Checked: PS H = 1:500Drawing No. Sheet No. E3-13/1164 - 704 1 OF 1 V = 1:100Date No. By Drawn: MS Chckd Approved: PS Amendments

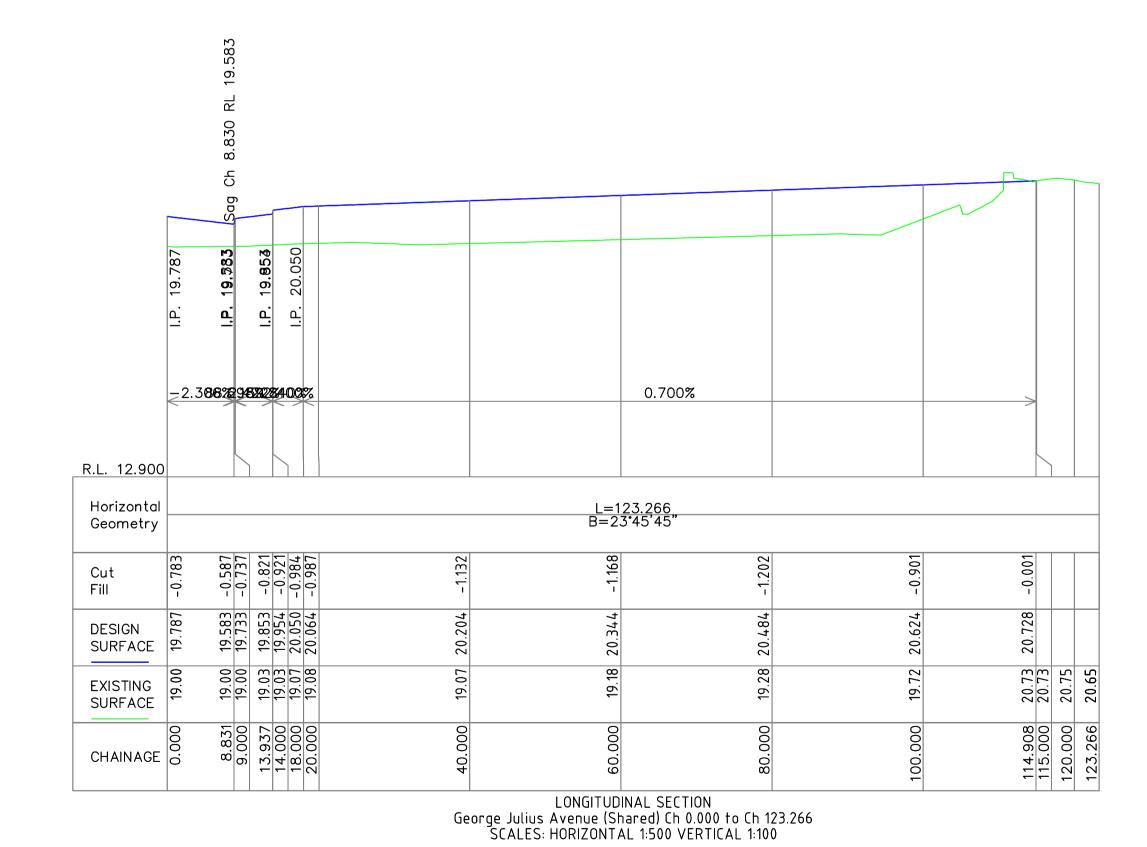



LONGITUDINAL SECTION Rose Valley Way (East) Ch 0.000 to Ch 132.950 SCALES: HORIZONTAL 1:500 VERTICAL 1:100

	5				ROSE V	•	EAST) LONGSE	CTION	CITYOFSYDNEY	(3)	8
	3					EPSOM PARI	K PRECINCT		(2) (2) (3) (4) (4) (5) (5) (5) (5) (5) (5)		
21-09-2015	2	MS	100% Design	PS	INFR	ASTRUCTURE	CONCEPT DESIGI	N	PRELIMINARY ONLY		Issu 2
23-12-2014	1	MS	80% Design	PS	Designed: MS	Checked: PS	SCALE: H = 1:500	PAPER:	NOT TO BE USED FOR CONSTRUCT Drawing No.		et No.
Date	No.	Ву	Amendments	Chckd	Drawn: MS	Approved: PS	V = 1:100	A1	E3-13/1164 - 707	1 0)F 1

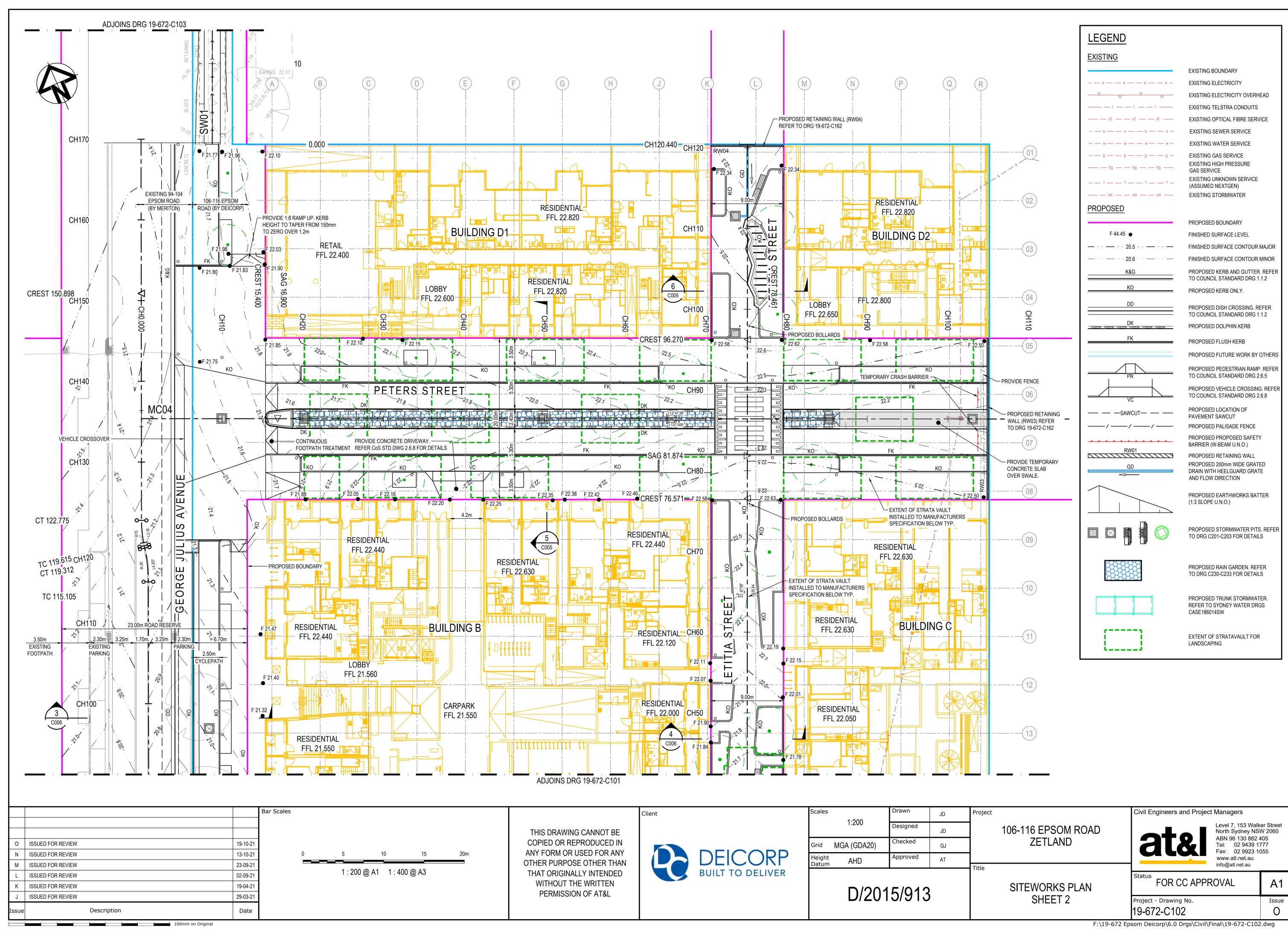
Issue


2



LONGITUDINAL SECTION
Peters Street Ch 0.000 to Ch 136.190
SCALES: HORIZONTAL 1:500 VERTICAL 1:100

	5 4				PET		T LONGSECTIO D - 137	N	CITYOFSYDNEY	(Z	3
	3					EPSOM PARI	K PRECINCT		5 (0 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
21-09-2015	2	мѕ	100% Design	PS	INFR	ASTRUCTURE	CONCEPT DESIGI	V	PRELIMINARY ONLY	TON	Issue 2
23-12-2014	1	мѕ	80% Design	PS	Designed: MS	Checked: PS	SCALE: H = 1:500	PAPER:	NOT TO BE USED FOR CONSTRUCT Drawing No.	Shee	
Date	No.	Ву	Amendments	Chckd	Drawn: MS	Approved: PS	V = 1:100	A1	E3-13/1164 - 708	10	F 1



	5				GEORGE JU	JLIUS AVENUE CH 0	(SHARED) LONGS - 123	SECTION	CITYOFSYDNEY		8
	3					EPSOM PARI	K PRECINCT				
21-09-2015	2	MS	100% Design	PS	INFR	ASTRUCTURE	CONCEPT DESIG	N	PRELIMINARY ONLY		
23-12-2014	1	MS	80% Design	PS	Designed: MS	Checked: PS	SCALE:	PAPER:	NOT TO BE USED FOR CONSTR	RUCTION	Let N
Date	No.	Ву	Amendments	Chckd	Drawn: MS	Approved: PS	H = 1:500 V = 1:100	A1	E3-13/1164 - 718	1 C	

Issue

Sheet No. 1 OF 1

Appendix C

Investigation Data

Table C1 Historical Soil Analytical Results Metals and PAHs

					Location	DP-BH1	DP-BH1	DP-BH1	DP-BH1	DP-BH2	DP-BH2	DP-BH3	DP-BH3
					Sample Depth		0.3-0 5	1.7-2.0	2.7-3.0	0.1-0 3	1.7-2.0	0.1-0.3	1.7-2.0
						DP-BH1 0.1-0 3	DP-BH1 0.3-0.5	DP-BH1 1.7-2.0	DP-BH1 2.7-3.0	DP-BH2 0.1-0 3	DP-BH2 1.7-2.0	DP-BH3 0.1-0.3	DP-BH3 1.7-2 0
					Sample Date	2009	2009	2009	2009	2009	2009	2009	2009
					SampleCode		-	-	-	-		-	-
						DP 2009	DP 2009	DP 2009	DP 2009	DP 2009	DP 2009	DP 2009	DP 2009
			NEPM (2013)	NEPM (2013)	NEPM (2013)								
			EIL and ESL -	HIL C	HL ['] D								
Chemical Name	Units	LOR	Open Space	Recreational	Commercial								
Metals			- 1 1										
Arsenic	mg/kg	4	100	300	3000	<4	_	<4	_	6	<4	<4	6
Cadmium	mg/kg	0.4		90	900	<0.5	_	<0.5	-	<0.5	<0.5	<0.5	2.2
Chromium (III+VI)	mg/kg	1				6	_	1	_	4	2	5	24
Copper	mg/kg	1	60	17000	240000	65	-	11	-	36	12	16	210
Lead	mg/kg	1	1100	600	1500	97	-	14	-	59	31	99	370
Mercury	mg/kg	0.1		80	730	0.2	-	<0.1	-	0.1	<0.1	0.1	0.6
Nickel	mg/kg	1	30	1200	6000	12		2	-	4	2	3	29
Zinc	mg/kg	1	70	30000	400000	84	-	26	-	200	51	110	270
PAH/PhenoIs													
Acenaphthene	mg/kg	0.1				-		=	-	-	-	-	
Acenaphthylene	mg/kg	0.1				-	-	-	-	-	-	-	-
Anthracene	mg/kg	0.1				-	-	•	-	-	-	-	-
Benz(a)anthracene	mg/kg	0.1				-	•	•	-	-	-	-	-
Benzo(a) pyrene	mg/kg	0.05	0.7			6.6	4.3	0.09	< 0.05	03	-	0.2	-
Benzo(b)&(k)fluoranthene	mg/kg					-	•	•	-	-	-	-	-
Benzo[b+j]fluoranthene	mg/kg	0.5				-	ı	-			-		ı
Benzo(g,h,i)perylene	mg/kg	0.1				-	-	-			-		-
Benzo(k)fluoranthene	mg/kg	0.5				-	ı	-			-		ı
Chrysene	mg/kg	0.1				-	-	-			-		-
Dibenz(a,h)anthracene	mg/kg	0.1				-	-	-	-	-	-	-	-
Fluoranthene	mg/kg	0.1				-	-	-	-	-	-	-	-
Fluorene	mg/kg	0.1				-	-	-	-	-	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1				-	-	_	-	-	-	-	-
Naphthalene	mg/kg	0.1	170			-	-	-	-	-	-	-	-
Phenanthrene	mg/kg	0.1				-	-	-	-	-	-	-	-
Pyrene	mg/kg	0.1				-	-	=	-	-	-	-	•
PAHs (Sum of total)	mg/kg	0.5		300	4000	105.9	46.1	0.39	<lor< td=""><td>2.4</td><td>-</td><td>1.4</td><td>•</td></lor<>	2.4	-	1.4	•
Benzo(a)pvrene TEQ (LOR)	ma/ka	0.5	ļ	3	40	-	-	=	-	-	-	-	-
Pesticides Total OCPs	ma/ka	1											
Total OCPs	ma/ka ma/ka	1				-	-	-	-	-	-	-	-
PCBs	III G/ NG	1				_	-	-	-	-	-	-	-
Total PCBs	ma/ka			1	10	_						<lor< td=""><td></td></lor<>	

< - result less than laboratory limit of reporting (LOR)

Shading or bold - result greater than criteria
H L - Health investigation level
EIL - Ecological investigation level
ESL - Ecological screening level
RPD - relative percent differnce

Table C1 Historical Soil Analytical Results Metals and PAHs

					Location	DP-BH4	DP-BH4	DP-BH5	DP-BH5	BHA1	BHA1	BHA1	WSP-BH05
					Sample Depth		1.7-2 0	0.1-0.3	1.7-2.0	2	2.5	4	0.5
					Field Sample ID		DP-BH4 1.7-2.0	DP-BH5 0.1-0.3	DP-BH5 1.7-2.0	A1 2.0	A1 25	A1 4.0	WSP-BH05_0.5
					Sample Date		2009	2009	2009	27/03/2020	27/03/2020	27/03/2020	6/06/2011
					SampleCode		-	2003	<u>-</u>	S20-Ma45452	S20-Ma45453	S20-Ma45454	0/00/2011
					Samplecode	DP 2009	DP 2009	DP 2009	DP 2009	JBS&G 2020	JBS&G 2020	JBS&G 2020	WSP 2012
			NEPM (2013)	NEPM (2013)	NEPM (2013)	DI 2003	DI 2003	DI 2003	DI 2003	3DOGO 2020	3DO&O 2020	3DOGO 2020	VV 01 2012
			EIL and ESL -	HIL C	HLD								
Chemical Name	Units	LOR	Open Space	Recreational	Commercial								
Metals	Units	LUK	Open Space	rtcorcational	Commercial								
Arsenic	mg/kg	1	100	300	3000	4	5	<4	4	-	_	-	<4
Cadmium	mg/kg	0.4	100	90	900	<0.5	1.7	<0.5	0.7				<0.5
Chromium (III+VI)	mg/kg	0.4		90	900	10	25	<0.5 4	17	-	-	-	3
	mg/kg	1		17000	240000	22	220	27	160			-	16
Copper		<u>'</u>	60 1100			56	300			-	-	-	
Lead	mg/kg	0.1	1100	600 80	1500 730	0.2	0.7	71 0.7	490 0.7	<5	<5	<5	29 0 2
Mercury	mg/kg	0.1						4		-	-	-	
Nickel Zinc	mg/kg	1	30	1200 30000	6000 400000	3 50	26	80	11	-	-	-	3 48
	mg/kg	11	70	30000	400000	50	270	80	280	-	-	-	48
PAH/Phenois		0.1								0.5	<0.5	<0.5	
Acenaphthene	mg/kg					-	-	-	-	<0.5			-
Acenaphthylene	mg/kg	0.1				-	-	-	-	<0.5	<0.5	<0.5	-
Anthracene	mg/kg	0.1	-			-	-	-	-	<0.5 <0.5	<0.5	<0.5 <0.5	-
Benz(a)anthracene	mg/kg	0.1				-	-	-	-		<0.5		-
Benzo(a) pyrene	mg/kg	0.05	0.7			0.4	-	0.2	-	<0.5	<0.5	<0.5	0.1
Benzo(b)&(k)fluoranthene	mg/kg	1				-	-	-	-	<0.5	<0.5	<0.5	-
Benzo[b+j]fluoranthene	mg/kg	0.5				-	-	-	-	<0.5	<0.5	<0.5	-
Benzo(g,h,i)perylene	mg/kg	0.1				-	-	-	-	<0.5	<0.5	<0.5	-
Benzo(k)fluoranthene	mg/kg	0.5				-	-	-	-	<0.5	<0.5	<0.5	-
Chrysene	mg/kg	0.1				-	-	-	-	<0.5	<0.5	<0.5	-
Dibenz(a,h)anthracene	mg/kg	0.1				-	-	-	-	<0.5	<0.5	<0.5	-
Fluoranthene	mg/kg	0.1	 			-	-	-	-	<0.5	<0.5	<0.5	-
Fluorene	mg/kg	0.1				-	-	-	-	<0.5	<0.5	<0.5	-
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	470			-	-	-	-	<0.5	<0.5	<0.5	-
Naphthalene	mg/kg	0.1	170			-	-	-	-	<0.5	<0.5	<0.5	-
Phenanthrene	mg/kg	0.1				-	-	-	-	<0.5	<0.5	<0.5	-
Pyrene	mg/kg	0.1			4000	-	-	-	-	1.1	<0.5	<0.5	-
PAHs (Sum of total)	mg/kg	0.5		300	4000	2 9	-	1.7	-	1.1	<0.5	<0.5	0 6
Benzo(a)pvrene TEQ (LOR) Pesticides	ma/ka	0.5	-	3	40	-	-	-	-	<0.5	<0.5	<0.5	-
Total OCPs	ma/ka	+	 			_		_	-	_	_		_
Total OPPs	ma/ka	1	1					-		-		-	
PCBs													
Total PCBs	ma/ka			1	10	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lor<>							

< - result less than laboratory limit of reporting (LOR)

Shading or bold - result greater than criteria
H L - Health investigation level
EIL - Ecological investigation level
ESL - Ecological screening level
RPD - relative percent differnce

AECOM

Table C1 Historical Soil Analytical Results Metals and PAHs

					Location	WSP-BH05	WSP-BH05	WSP-BH09	WSP-BH09	WSP-BH12	WSP-BH12	BH214	BH214	BH215
					Sample Depth	2	5	0.2	1	0.5	3	1-1.1	2-2.1	0 5-0.25
					Field Sample ID	WSP-BH05_2	WSP-BH05_5	WSP-BH09_0 2	WSP-BH09_1	WSP-BH12_0.5	WSP-BH12_3	BH214_1 0-1.1	BH214_2.0-2.1	BH215_0.5-0 25
					Sample Date	6/06/2011	6/06/2011	6/06/2011	6/06/2011	9/06/2011	9/06/2011	26/11/2015	26/11/2015	26/11/2015
					SampleCode	-		-	-	-	-	ES1537688043	ES1537688044	ES1537688030
						WSP 2012	WSP 2012	WSP 2012	WSP 2012	WSP 2012	WSP 2012	AECOM 2015	AECOM 2015	AECOM 2015
			NEPM (2013)	NEPM (2013)	NEPM (2013)									
			EIL and ESL -	HIL C	HLD									
Chemical Name	Units	LOR	Open Space	Recreational	Commercial									
Metals														
Arsenic	ma/ka	4	100	300	3000	<4	<4	<4	7	<4	<4	<5	11	<5
Cadmium	mg/kg	0.4		90	900	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	4	<1
Chromium (III+VI)	mg/kg	1				3	<1	8	4	8	4	4	100	9
Copper	mg/kg	1	60	17000	240000	21	<1	4	6	32	2	10	701	5
Lead	mg/kg	1	1100	600	1500	53	1	13	19	66	3	63	965	16
Mercury	mg/kg	0.1		80	730	0.2	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	12	<0.1
Nickel	mg/kg	1	30	1200	6000	3	<1	5	2	11	2	2	105	5
Zinc	mg/kg	1	70	30000	400000	69	3	26	140	80	24	53	629	33
PAH/PhenoIs														
Acenaphthene	mg/kg	0.1				-		-	-	-	-	<0.5	<0.5	<0.5
Acenaphthylene	mg/kg	0.1				=		-	=	-	=	<0.5	<0.5	<0.5
Anthracene	mg/kg	0.1				-	-	-	-	-	-	<0.5	<0.5	<0.5
Benz(a)anthracene	mg/kg	0.1				-		-	-	-	=	0.6	26	<0.5
Benzo(a) pyrene	mg/kg	0.05	0.7			0.3	<0.05	< 0.05	< 0.05	1.8	0.8	1.1	3.3	<0.5
Benzo(b)&(k)fluoranthene	mg/kg					-	-	-	-	-	-	-	-	-
Benzo[b+j]fluoranthene	mg/kg	0.5				•	-	-	•	-	-	1.2	4	<0.5
Benzo(g,h,i)perylene	mg/kg	0.1				-	-	-	-	-	-	0.8	28	<0.5
Benzo(k)fluoranthene	mg/kg	0.5					-	-		-	-	<0.5	1 6	<0.5
Chrysene	mg/kg	0.1				-	•	-	-	-	-	0.6	25	<0.5
Dibenz(a,h)anthracene	mg/kg	0.1				-		-	-	-	-	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.1				-	•	-	-	-	-	0.9	3 9	< 0.5
Fluorene	mg/kg	0.1				-	•	-	-	-	=	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1				-		-	-	-	-	0.6	2.1	<0.5
Naphthalene	mg/kg	0.1	170			-	-	-	-	-	-	<0.5	<0.5	<0.5
Phenanthrene	mg/kg	0.1					•	-		-	=	<0.5	1 6	<0.5
Pyrene	mg/kg	0.1				-	-	-	-	-	-	1.1	4 2	<0.5
PAHs (Sum of total)	mg/kg	0.5		300	4000	3.5	<lor< td=""><td><lor< td=""><td><lor< td=""><td>17.9</td><td>4.7</td><td>6.9</td><td>28.6</td><td><0.5</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>17.9</td><td>4.7</td><td>6.9</td><td>28.6</td><td><0.5</td></lor<></td></lor<>	<lor< td=""><td>17.9</td><td>4.7</td><td>6.9</td><td>28.6</td><td><0.5</td></lor<>	17.9	4.7	6.9	28.6	<0.5
Benzo(a)pvrene TEQ (LOR)	ma/ka	0.5		3	40	-	-	-	-	-	-	1.9	4 9	<0.5
Pesticides		+				LOD			1.00	LOD		ļ		\vdash
Total OCPs Total OPPs	ma/ka ma/ka	1				<lor <lor< td=""><td>-</td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td>-</td><td>-</td><td></td><td>-</td></lor<></lor </td></lor<></lor </td></lor<></lor 	-	-	<lor <lor< td=""><td><lor <lor< td=""><td>-</td><td>-</td><td></td><td>-</td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>-</td><td>-</td><td></td><td>-</td></lor<></lor 	-	-		-
PCBs	mu/ku					<lur< td=""><td>-</td><td>-</td><td><lur< td=""><td>SLUR</td><td>-</td><td>-</td><td></td><td></td></lur<></td></lur<>	-	-	<lur< td=""><td>SLUR</td><td>-</td><td>-</td><td></td><td></td></lur<>	SLUR	-	-		
Total PCBs	ma/ka			1	10	<lor< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td></td><td>-</td><td></td><td></td></lor<></td></lor<></td></lor<>			<lor< td=""><td><lor< td=""><td></td><td>-</td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td>-</td><td></td><td></td></lor<>		-		

< - result less than laboratory limit of reporting (LOR)

- result less than laboratory limit of reporting
 Shading or bold - result greater than criteria
 H L - Health investigation level
 EIL - Ecological investigation level
 ESL - Ecological screening level
 RPD - relative percent differnce

BH218

BH219

AECOM

Table C1 Historical Soil Analytical Results Metals and PAHs

BH216

BH216

BH217

BH217

BH218

BH215

Location

					Sample Depth	2-2.1	0.5	-0.6	1.5-1 6	0.5-0.6	2.4-2.5	0.15-0.	25	2-2.1	0-0	0.1
					Field Sample ID	BH215_2.0-2.1	BH216_0.5-0.6	QC216	BH216_1.5-1 6	BH217_0 5-0.6	BH217_2.4-2 5	BH218_0.15-0.25	QC221	BH218_2.0-2.1	BH219_0.0-0.1	QC214
					Sample Date	26/11/2015	25/11/2015	25/11/2015	25/11/2015	26/11/2015	26/11/2015	26/11/2015	24/11/2015	26/11/2015	25/11/2015	25/11/2015
					SampleCode	ES1537688031	ES1537688028	ES1537688049	ES1537688029	ES1537688036	ES1537688037	ES1537688045	138129-7	ES1537688046	ES1537688026	ES1537688048
						AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015
		1	NEPM (2013)	NEPM (2013)	NEPM (2013)											
			EIL and ESL -	HĽC ´	HLD											
Chemical Name	Units	LOR	Open Space	Recreational	Commercial											
Metals																
Arsenic	ma/ka	4	100	300	3000	<5	<5	<5	11	<5	<5	<5	<4	<5	<5	<5
Cadmium	mg/kg	0.4		90	900	<1	<1	<1	<1	<1	<1	<1	<0.4	<1	<1	<1
Chromium (III+VI)	mg/kg	1				3	4	4	27	3	<2	7	8	3	9	4
Copper	mg/kg	1	60	17000	240000	18	44	35	364	9	<5	12	7	24	9	26
Lead	ma/ka	1	1100	600	1500	33	110	89	729	219	6	27	17	46	19	46
Mercury	ma/ka	0.1		80	730	<0.1	0.2	0.2	1.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	30	1200	6000	2	4	4	21	2	<2	4	7	3	6	4
Zinc	mg/kg	1	70	30000	400000	57	99	89	646	35	49	44	29	91	36	73
PAH/PhenoIs	g/itg	i l		00000	100000	<u> </u>	- 33		040					Ŭ.	- 55	
Acenaphthene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.5
Acenaphthylene	mg/kg	0.1				<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.5
Anthracene	ma/ka	0.1				<0.5	<0.5	<0.5	1.6	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.5
Benz(a)anthracene	mg/kg	0.1				<0.5	<0.5	<0.5	5.9	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	0.9
Benzo(a) pyrene	ma/ka	0.05	0.7			<0.5	<0.5	<0.5	7.5	<0.5	<0.5	<0.5	0.1	<0.5	<0.5	1.7
Benzo(b)&(k)fluoranthene	mg/kg	0.00	0.1			-	-	-	-	-	-	-	<0.2	-	-	- '-
Benzo[b+j]fluoranthene	mg/kg	0.5				<0.5	<0.5	<0.5	8.5	<0.5	<0.5	<0.5	- 10 2	<0.5	<0.5	1.8
Benzo(g,h,i)perylene	mg/kg	0.1				<0.5	<0.5	<0.5	5.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	1.5
Benzo(k)fluoranthene	mg/kg	0.5				<0.5	<0.5	<0.5	3.4	<0.5	<0.5	<0.5	-	<0.5	<0.5	0.6
Chrysene	ma/ka	0.1				<0.5	<0.5	<0.5	5.9	<0.5	<0.5	<0.5	0.1	<0.5	<0.5	0.9
Dibenz(a,h)anthracene	mg/kg	0.1				<0.5	<0.5	<0.5	1.3	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.5
Fluoranthene	ma/ka	0.1				0.5	<0.5	<0.5	9.5	<0.5	<0.5	<0.5	0.1	<0.5	<0.5	1.5
Fluorene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	ma/ka	0.1				<0.5	<0.5	<0.5	4.3	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	1.1
Naphthalene	mg/kg	0.1	170			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.5
Phenanthrene	mg/kg	0.1				<0.5	<0.5	<0.5	4	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.5
Pyrene	mg/kg	0.1				0.5	<0.5	0.5	10.3	<0.5	<0.5	<0.5	0.1	<0.5	<0.5	1.8
PAHs (Sum of total)	mg/kg	0.5		300	4000	1	<0.5	0.5	68.9	<0.5	<0.5	<0.5	0.48	<0.5	<0.5	11.8
Benzo(a)pyrene TEQ (LOR)	ma/ka	0.5		3	40	1.2	<0.5	12	11.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.7
Pesticides						· -										
Total OCPs	ma/ka					-	-				-	-		-	-	-
Total OPPs	ma/ka	1				-	-	-	-	-	-	-	-	=	-	-
PCBs Total PCBs	ma/ka	+		4	40		_						1		_	
L Hotal PCBS	iina/ka	1			10	-	-	-	-	-	-	-			-	-

< - result less than laboratory limit of reporting (LOR)

- result less than laboratory limit of reporting
 Shading or bold - result greater than criteria
 HIL - Health investigation level
 EIL - Ecological investigation level
 ESL - Ecological screening level
 RPD - relative percent differnce

					Location	BH219	BH220	BH220	BH221	BH221
					Sample Depth	1 5-1.6	0 5-0.6	2-2.1	1-1.1	2.4-2.5
								BH220A_2 0-2.1		
					Sample Date	25/11/2015	26/11/2015	26/11/2015	26/11/2015	26/11/2015
					SampleCode		ES1537688034	ES1537688035	ES1537688040	
					- Campio Codo	AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015	AECOM 2015
			NEPM (2013)	NEPM (2013)	NEPM (2013)					
			EIL and ESL -	HLC	HLD					
Chemical Name	Units	LOR	Open Space	Recreational	Commercial					
Metals	Onico	LOIL	орон орисс							
Arsenic	mg/kg	4	100	300	3000	<5	<5	<5	<5	<5
Cadmium	mg/kg	0.4		90	900	<1	<1	<1	<1	<1
Chromium (III+VI)	mg/kg	1		00	000	<2	3	<2	9	<2
Copper	mg/kg	1	60	17000	240000	13	18	15	25	22
Lead	mg/kg	1	1100	600	1500	32	32	27	58	27
Mercury	mg/kg	0.1		80	730	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	30	1200	6000	<2	3	<2	7	3
Zinc	mg/kg	1	70	30000	400000	78	46	21	83	69
PAH/Phenois						.,				
Acenaphthene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	mg/kg	0.05	0.7			<0.5	<0.5	<0.5	0.5	<0.5
Benzo(b)&(k)fluoranthene	mg/kg					-	-	-	-	-
Benzo[b+j]fluoranthene	mg/kg	0.5				<0.5	<0.5	<0.5	0.6	<0.5
Benzo(g,h,i)perylene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	mg/kg	0.5				<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.1				<0.5	<0.5	<0.5	0.7	<0.5
Fluorene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	mg/kg	0.1	170			<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	mg/kg	0.1				<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	mg/kg	0.1				<0.5	<0.5	<0.5	0.8	<0.5
PAHs (Sum of total)	mg/kg	0.5		300	4000	<0.5	<0.5	<0.5	2.6	<0.5
Benzo(a)pvrene TEQ (LOR)	ma/ka	0.5		3	40	< 0.5	<0.5	<0.5	1.2	< 0.5
Pesticides		1								
Total OCPs	ma/ka						-		-	-
Total OPPs PCBs	ma/ka	 				-	-	-	-	-
Total PCBs	ma/ka			1	10	_			-	_
110,011 000					10	-				

< - result less than laboratory limit of reporting (LOR)

Shading or bold - result greater than criteria

HIL - Health investigation level

EIL - Ecological investigation level ESL - Ecological screening level RPD - relative percent differnce

									-	D 4H	D -6H	D -9H	D 48H	D -8942	D -8942	D 4643	D 8H3	D 9H4	D 9H4	D 996	D 9H6	984
										0.03	0205	720	27.30	0 03	720	0.03	7-20	0.03	7-20	0.03	7-2-0	2
									an e	0.494 0.403	D -9H _03-05	D 48H _ 7-20	D 4H 2730	D-6942_0 -03	D 46HQ_ 720	0.490_0.03	D 4HG 720	D-9H4_0 03	D-6045_720	D 8H 0 03	D-9HG_720	A_20
									20 0 20	2009	2009	2009	2009	2009	2009	2009	2009	2009	009	2 09	2009	27 03 2020
									an •												ļ	500-MM5454
					12)			A 2		D 2009	D 2009	D 2009	0 2009	D 2009	D 2009	D 2009	D 2009	D 2009	0 2009	D 2009	D 2009	958G 2020
				м	Sand Oto v m		Di ect Con act	Di ect Contact	w- a -size													Ì
em a ame	•					0 0 × m																
									**	- 70		- 79	- 00		- 79	- 79	- 79	- 09			- 70	4
	ng kg		7_	_	N	3	20	- 00	77	1 OK	+ OR	4 DK	4 DK	< OR	+ OR	+ OR		4 DK	4 OR	< CR	4 OR	
	ng kg ng ka			_	N N	N	\$300	85000		1 OK	+ OR	4 DK	4 DK	+ OR	+ OR	+ OR	+ 0k	4 DK	+ OR	× 08	4 OR	-0
	ng ng ng ng			_	N N	790	5000	780000		1 OK	+ OK	4 DK	4 DK	+ OK	+ OR	+ OR	+ OK	4 DK	4 DK	+ OR	4 OR	-02
	ng ng ng ng			_	N.	290	5000	2,80000		1 OK	+ OK	4 DK	4 DK	+ OK	+ OR	+ OR	+ OK	4 DK	4 DK	+ OR	4 OR	403
	ng ng ng ng	2		_			900	29000	_	1 OK	+ OK	4 DK	4 DK	+ OK	+ OR	+ OR	+ OK	4 DK	4 DK	+ OR	+ OR	-015
	7.7		_	_	~	- "	900	28000		* 55	104		* 06	* 08	* 08	* 100	104	100	* 06	* 08		10.0
move ex celcio			_	_	~	200	_	_														-200
IN HOLE BY CR.C. C.	-9.59		_	_	~	200	_	_				-		-	-		_	_		-		140
06-C 0	ma ka			2.6			5.00	82000														-20
0.004				000	_		3900	62000				-		-	-					-		4500
2 6-234	ng ka	99		2500				95000			-	-		-	-	-	-	-		-		2400
CHI-CHI	ma ka	99	2	0.00			7600	20000				-										
C 0 - Ce3 (Sum o ces)	mg kg	0																				
	4.7																					
	ing kg									125				125		-25		125		125		420
0.0-0.4	mg kg	0												-						-		300
	ng kg																					-500
-C 0 - C36 (Sum o otal	ng kg	9								670				< 00		× 00		< 00		< 00		6300

Notes

- escribes han abo a oy imit o epo ing (CR)
Shading o bod - escri gleae than c te ia
HG - Hearth so eening level
EI - Ecoogical nives gat on evel
ES - Ecoogical ac eening lev i

MW - I t u ive Main ennage Wo ke

MW -1 to be this encace this ke
M -thangaper or limit is
R D -Retail e le lett Dillence
This is a lett Dillence
This control is a control to analisis (u ge) « OR o one
concert ail n. omsem-uolate method (\$1.0))

										SHA.	SHA.	WS 48405	WS 49405	WS -8HOS	WS -\$H09	WS \$H09	WS 8H 2	WS 8H 2	SH2 4	\$1-G: 4	9H2 S	SH2 5
																						2.2
												WS \$H05_0.5	WS -8H05_2	WS 4H05_5	W2 8HD 02	WS RHOP_	WS - GH 2_05	WS SH 2,3	BHC 4 D-		MC 5 0 5 0 25	
									20 0 20	27 03 2020	27 03:2020	6 06 20	6.06.20	6:00:20	6 622	6 06 22	9 06 20	9 06 20	26 20 5	26 22 5	28 20 5	26 20 5
										S00-Ms45450	522-45945454										SS: SSPERRORD	
		L			# 2 h			A 2		958 G 2000	958G 2020	WS 20.2	WS 20.2	WS 20.2	WS 20.2	WS 20.2	W9 20 2	WS 20.2				
			4 -	M	HG C-	NE M20 3	HS C-	550 -	MW-													
					S nd	HG D-	Di ect	Di ecz														
em a a e	_	-	2.0		032 × III	Sand	Con act	Cont ex	<2m													
** * * * *					ı	004 80																ı I
					1																	
	mg kg		7		N	2	20	- 00	77	5	6	< OR	< OR	< OR	< CR	< CR	< OR	< OR	v0 2	402	v0.2	v0 2
	mg kg				N	N	\$ 00	5000		5	6	< OR	< OR	< OR	< CR	< CR	< OR	< OR	105	401	405	105
	mg kg				N	N	9000	2900000		5	6	< OR	< OR	< OR	< CR	< CR	< OR	< OR	105	401	405	5.
	mg kg				N	230	5000	2300000		40.3	40.3	< OR	< OR	< OR	< CR	< CR	< OR	< OR	105	401	405	105
	mg kg									5	6	< OR	< OR	< OR	< CR	< CR	< OR	< OR	v0 2	402	v0.2	v0 2
Naph halene	mg kg				N	N	- 00	9000		v0 S	105	< OR	< OR	< OR	< CR	< CR	< OR	< OR	105	401	405	105
	2 6																					
minus 9 5X (CS-C) 0	ang kg	0			N	290				22	-20								,	* 0	* 0	,
		I																				
CHC 0	the ke			700			5 00	2000		22	-20								**	< 0	< 0	< 0
0.00.0	the ke	50		2500	_		2 00	62000		890	< 00								150	150	-50	-50
	110 12		_		_			85000			< 00								0		< 00	
	110 10		2	0000	_		7.00	20000		× 00	< 00								< 00	200	× 00	× 00
C-0-040 (Sumo : cts)		30		_	_					340	< 00								0	830	-30	20
	4.7	,		_	_																	
	110 12			_	_					+2 760	+22 -20	-25	-25	-25	-25	-25	-25	-25	< 0	× 0	× 0	× 0
0.0-0.4	19 19	32		_	_					280	-20				-	-			-50	450	-30	-30
	_			_	_					-60									- 20			m
	110 12			_	_						-50				-	-				4.0	< 00	- 00 m
+C 0 - C36 plum o cra										200	450	+250	+290	4250	+250	+250	85	<250	- 00	740	-50	

No.es.

- each eas han aboato y into epoing (OR)
Shating o old - each glea e than cle a
HG - Hearth or eaching te el
El - Econgcal in est garon level
ES - E ological accessing swel

None

MW - nt util e Main ennage Wo e MV - nt uti e titan en unu M - Management in ts R D - Rei tive le centité ence

No this ene de eclors on vostle analysis (u.ge) < OR o owe co cent aton omsem-claire me hod SMM)

									,		2.6	8 0	90°2 6	SH2 7	9942 7	9142 1		8.0	
											06		5.6	05-06	2425	0 5-02			2-2
										BHZ 6 05-06	QC2 6					\$942 8 0 5-025			642 S 201
										25 20 5	25 20 5		25 20 5	26 20 5	26 20 5	26 20 S	24 20 5		26 01
			_	_	4 1 1		_		an .	NO 537688 28	F2 53768006		15: 33748902	ES 53760003	FOL EXPERSION	NO STAR OF	25 29 7	_	12: 32768
			_	- 10	HS C-	NC M 90 9	HS C-	MW.	MW-		_	_	_	_	_	_	_	-	
				100	Sant	HS D-	Diecz	Di ect	aw-										l
			- :-		0.04 0		Con acz		- Com-										
	- 4				L -,	0 to 4 m		and affect	Agen	l		I .	l .	1	l .	ı	1		ĺ
		_		_	1				_									_	
MC 404	mata			_			90	- 00	77	-0.2	-0.5	~	-0.7	-0.2	-0.7	-0.1	-0.9	~	102
	mata			_	2	- d	5300	85000		+0.5	+0.5	nc nc	-0.5	+0.5	-05	-05	10.2	nc nc	105
	mata		_		N N	- 0	8000	20000		-0.5	-05	nc nc	103	+0.5	-05	-05	125	nc nc	105
	mata				- 2	290	5000	220000		-0.5	-05	- 000	-0.5	-0.5	-0.5	-0.5	-2	8	-25
	mata					_				-0.2	+0.2	- 000	-0.1	+0.2	+0.2	+0.2	-	8	-0.7
	mata				N	N	900	29000		10.5	105	ne	10.5	10.5	105	10.5	-0	nc	105
1 * V* 3 *	-	1 1																	
minus 8 6X (Ce-C o	mata	0			N	260				1.0	< 0	nc	< 0	< 0	< 0	< 0	125	nc	< 0
		I																	
DEC 6	maka			700			5 00	82000			< 0		< 0	< 0	< 0	< 0	+25		< 0
0.000				-000			3900	62000		150	150		-50	150	×50	×50	v50		-50
	mgig			2500			7400	25000		* 0	< 00	66		< 00	< 00	< 00	× 00	nc	۰
	mgig		2	0000	_		7400	20000		-60	× 00	86	2.0	+ 00 -60	< 00 -50	× 00	× 00	nc	× 00
0-C opuno cab				_	_				_	450	+30		740	450	450	+30		_	۰
	mata			_	_						- 0	~	- 0	4.0	- 0	- 0	-76	~	- 0
	mata		_	_	_	_	_	_		-60	-50	200	-50	-50	-50	-50	-30	20	-100
. 0.0.4	-949		_		_					100	100	100		100	190	190	140	16.	-
29 C30	mata	00	_	_	_					< 0	< 00	_	990	× 00	< 00	< 00	< 00	_	< 00
C 0 - Children o o al										-60	-50		699	-60	-50	-50	1250		-50

No es:

- east ess han labo ato y m to epotrog (OR)

Shading o bold-eastig ease thin cie a

HG - Hearth at easting ease

ES - Ecological in eargaion te el

ES - Ecological at earling easel

MW - nt usive Maintennage Worke

^{**}Suptitude end factions on your elanaysis (uige) + OR o owe oncert at on longerily you let me had \$88)

										604		8.0	992.9	90×000	\$6×000	98HG22	99422
									* * *	9				05-06	2-2		2425
								•	an e	RMG 9_000	QC2 4			\$H020_05-06	RH220A, 2 -2	RHG2 _ 0-	SHG2 _2 6-2
									20 0 20		25 20 5		25 20 5	28 20 5	29 0.5	28 20 5	26 22 5
										EG: 537488006	SC SEPRESON		\$5: 527689027	65: 53769903	\$5: 537999005	65: 53768904	53:53N880
					M 2)				_								
			4 -	M	HG C-	NE M20 3	HG C-	MW -	w-								
					Sand	HS D-	Di ect	Di ecz									
en a ane	-	_	2.0		0 to < to		Con act	Contact	~2m								
an a ana					ı	004 80											
					1												
Respect	maka		7		N	2	20	- 80	77	102	102	6	102	102	102	102	102
6th benz ne	maka				N	N	5300	25/000		401	105	6	40.5	v0.5	10 S	v0.5	405
GE 809	maka	5			N	N	8000	280000		401	105	6	40.5	v0.5	10 S	v0.5	405
Xyene o al	maka	5			N	230	5000	230000		401	105	6	40.5	v0.5	10 S	v0.5	405
ons in EX	maka	2								102	102	6	102	102	102	102	102
Naphtha ene	maka				N	N	900	29000		401	105	nc	40.5	v0.5	10 S	v0.5	40.5
	,																
minutile EX Cli C o	maka	0			N	260				* 0	* 0	nc	* 0		,		* 0
		ı															
OHC 0	moko	0		700			5:00	92000		< 0	< 0		< 0	* 0	< 0	* 0	< 0
0.00 6	moko	0		000			3800	62000		< 0	-50		-50	150	150	150	150
C 6-CM	rhg kg	8		2500				85000		< 00	2.0	66	× 00	× 00	× 00	× 00	< 00
C34-C40	9		*	0000			7000	20000		< 00	8	8	× 00	× 00	× 00	× 00	< 00
C 0 - C40 (Sumo ota)										< 0	360	_	-50	450	-50	450	-50
	4 T																
54 - CH	rho ko									< 0	* 0	66	< 0	* 0	< 0	* 0	* 0
20-04	ngkg	0								< 0	-50	86	-50	450	-50	450	-50
		-										_					
C29-C36	9									< 00	8		× 00	× 00	× 00	× 00	< 00
+C d - C36 (Sumo 1 ta																	

Notes

- east lies t an aboa o y imit o lepo ing (CR)
Shading o bod - east glease has c te la

RG - Healt house oning east

EI - Ecological meet into evel

EO - Ecological ecentriques

MM - Into use Main encace Wolke

M - Management ini s R D - Retail e le ce t Di ence

Magh takens de actions imivata le analisis (u ge) « OR o owe concent a ion om emi-solate method (\$M)

				As es s	-
a	an e	e an e	an e se		
DH2 4		DH2 4 0-	26 20 5	No	
2 4	2-2	242-2	2 2		0 3 031 01 0 10 0 3 031 01 1 01 121 1 mm
BH2 5	05-025	DH2 5 05-025	26 20 5	No	
BH2 5	2-2	DH2 5 20-2	26 20 5	No	
BH2 6	05-06	DH2 6 05-06	25 20 5	No	
BH2 6	5-6	DH2 6 5- 6	25 20 5	No	
BH2 7	05-06	BH2 7_05-06	26 20 5	No	
BH2 7	24-25	DH2 7_24-25	26 20 5	No	
8 298	0 5025	BH2 0_0 5-025	26 20 5	No	
8 298	2-2	BH2 8_20-2	26 20 5	No	
\$102.9		BH2 9_ 5- 6	25 20 5	No	
\$102.9	0-0	DH2 9_00-0	25 20 5	No	
88/220	05-06	IDH220_05-06	26 20 5	No	
88/220	2-2	BH220A_2 0-2	26 20 5	No	
81/02	-	DH22 _ 0-	26 20 5	No	
\$HQ2	2425	BH22_24-25	26 20 5	No	
D BH	0 -03	D-8H_0-03	2009		
ă	03-05	D 4H 0305	2009		
D BH	7-20	D -BH _ 7-20	2009		
D BH	27-30	D -BH _27-30	2009		
0 892	0 -03	0 400_0 403	2009	No	
0 000	7-20	0 410_ 7-20	2009		
D 8843	0 -03	0 400 0 403	2009	No	
0 889	7-20	0 480_ 7-20	2009	-	
D 2014	0 -03	D -BH4_0 -03	2009	No	
D 2014	7-20	D -BH4_ 7-20	2009		
248 0	0 -03	0.485,0.403	2009	No	
248 0	7-20	0 485 7-2 0	2009	-	
DINA.	2	A_20	27 03 2020	-	
SHA.	25	A_25	27 03 2020		
DINA.	4	A_40	27 03 2020		
WS -\$MOS		WS -BHOS 05	0.00.20		
WS -\$MOS	2	WS -8H05_2	0.00,20	No	
WS -\$H05			6 06 20	No.	
WS -\$H09	0.2	WS -8H09_02	6 06 20		
WS -8H09		WS -8H09_	6 06 20	No	
WS -BH 2		WS -BH 2_05	9 06 20	No.	
				-	

				-	D -BH	D -BH	D BH	D-BH	D J842	D 8942	D -8H3	D BHS	D -894	D -8H4
					0.43	0305	7.20	2730	0.03	7-2.0	0.03	7,20	0.03	720
				4 10 4	D #M 0 03	D #M 03-05	D 8M 720	D JBM 27-30	D 8H2 0 -03	D JM2 720	D 3843 0 403	D 8H3 7-20	D -7944 O -03	D -BH4 7-20
				97 A 34	2000	2000	2002	2009	2000	2002	2009	2000	2002	2002
				970 A A		-	-	-					-	
					D 2009	D 2009	D 2009	D 2009	D 2009	D 2009	D 2009	D 2009	D 2009	D 2009
em a ame		T	W A 2 40	- 1										
am a	Tes	T)	C	C 2										
TX		Т												
Senzene		0.2	0	4	< OR	< OR	< OR	< OR	< OR	< OR	< OR	< OR	< OR	< CIR
Dhybergene	mgkg	05	600	24	< OR	< OR	< OR	< OR	< OR	< OR	< OR	< OR	< OR	< OR
o uene	make	0.5	285	2	< OR	< OR	< OR	< 08	< OR	< OR	< OR	< OR	< OR	< OR
Xyene oal	mgkg	0.5	000	4	< OR	< OR	< OR	< OR	< OR	< OR	< OR	< OR	< OR	< CIR
Me a x														
A sen c	mgkg	4	80	4	oli		ol		٥	-04	ol	٥	4	5
Cadmium	mg kg	0.4	20		<0.5		-05		40.5	<0.5	-05	2.2	<0.5	7
Ch on un II+V)	mgkg				6				4	2	5	24	0	25
Coppe	mgkg				23				36	2	6	2.0	22	220
ead	mgkg		80	4	97		4		59	3	29	370	56	300
Me cu y	mg kg	٥	4		0.2		9		۰	9	0	9.0	0.2	0.7
Nickel	mgkg		40		2		2		4	2	3	29	3	26
T														
CE - C9	ngkg	0	650	2	ß				25		25		- 25	
+C 0 - C36 (Sum o dial)	ngkg	8	0000	4	470				< 00		< 00		× 00	
A s														
Benzo(a) py ene	mg kg	8	0.5	2		4	0.09	<0.05	0.3		0.2		0.4	
AHs Sum o tota)	ngkg	5	200		653	46	0.29	< OR	2.4		4		29	

c- esut less han labo a o y imito epo trig (OR). Shading o bold - esut g eate than c te a

				-	D -BHS	D -BHS	BHA	BHA	BHA	WS -BH05	WS 8H05	WS -8H05	WS -8H09	WS 8H09
				am e e	0.43	720	2	25	4	0.5	2	5	0.2	
				e am e	D -BH5 0 03	D -BH5 7-2 0	A 20	A 25	A 40	WS -8H05 0 5	WS -8H05 2	WS BHCS 5	WS -8H09 02	WS 8H09
				am e a e	2009	2009	27 03 2020	27 03 2020	27 03 2020	6 06 20	6 06 20	6 05 20	6 06 20	6 06 20
				am e e			520 MH5452	\$20-Ms45453	520-Ma45454					
					D 2009	D 2009	BS&G 2020	BS&G 2020	BS&G 2020	WS 20 2	W\$ 20 2	WS 20 2	WS 20 2	WS 20 2
em a ame			W A 2 4)											
am	a T es		C	C 2										
TX														
Senzene	mg kg	0.2	0	4	< OR	< OR	8	\$	9	< OR	< OR	< OR	< OR	< CIR
Dhyberzene	maka	05	600	24	< OR	< OR	9	8	40	< OR	< OR	< OR	< OR	< CIR
o uene	mg kg	05	288	2	< OR	< OR	8	\$	9	< OR	< OR	< OR	< OR	< CIR
Xyene oal	mg kg	05	000	4	< OR	< OR	40.3	40.3	40.3	< OR	< OR	< OR	< OR	< CIR
Me a x														
A sen c	mg kg	4	00	4	- 04	4				-04	ol	-04	-04	7
Cadmium	mgkg	0.4	20		<0.5	0.7				<0.5	<0.5	<0.5	<0.5	<0.5
Ch on un II+V)	mg kg				4	7				2	3	,		4
Coppe	mg kg				27	60				٥	2	,	4	٥
ead	mg kg		00	4	7	49	6	ß	4	29	23		3	0
Me cu y	mg kg	0	4	l	0.7	0.7				0.2	0.2	<0	<0	<0
Nickel	mg kg		40		4					2	3	,		2
T														
CE - C9	mgkg	0	650	2	ß		2 0	- 2	<22	- 25	8	ŝ	- 25	- 25
+C 0 - C35 (Sum o dial)	mgkg	8	0000	4	< 00		E300	200	<50	-250	4250	<250	-250	-250
As														
Benzo(a) py ene	mg kg	8	0.8	2	0.2		40.5	40.5	40.5	0	0.3	88	40.02	40.05
AHs Sum o tota)	mgkg	5	200		7			-05	405	0.5	35	< OR	< OR	< CIR

Notes <- esut less han labo a o y imit o epo trig (OR) Shading o bold - esut g eate than c te a

				-	WS -8H 2	WS BH 2	US 2-7S	US 2-85	US 2-9S	US 2- 05	US 2- S	US 2- 2S	US 2- 3E	US 2- 4E
				am e e	0.5	3								
				e am e	WS -BH 2_05	WS -BH 2_3	US 2-75 0 4)	US 2 85(0)	US 2-95(2.3)	US 2- 05(0.5)	US 2: S()	US 2- 25(2.2)	US 2- 3E(0 E)	US 2- 4E(9)
				am e a e	9 05 20	9 05 20	7 05 20 5	7.05.20 8	70820 8	7 05 20 5	7 05 20 5	7 05 20 5	7 05 20 5	7 05 20 8
				am e e			S 8-Au 0 58	S 5-Au 0 59	S & Au 0 60	5 8-Au 0 6	S 5-Au 0 62	S 8 Au 0 63	5 8-Au 0 64	S 5 Au 0 65
					WS 20 2	WS 20 2	BS&G 2020	B5&G 2020	55&G 2020	BS&G 2020	B5&G 2020	55&G 2020	BS&G 2020	B5&G 2020
em a ame	- 8		W A 2 4)											
am a	Tes	_ ŋ	С	C 2										
TX														
Senzene		02		24	< OR	< OR	-0	-0	<02	-0	-0	<0	<0	40
Dihyberzene		5	600		< OR	< OR	40	40	<0.2	40	40	<0	<0	<0
o uene		5	285	2	< OR	< OR	-0	-0	<0.2	-0	-0	<0	8	<0
	rng kg	5	000	4	< OR	< OR	63	-03	95	63	-03	49.3	<0.3	<03
Me a x A senc														
	rng kg	4	- 00	4	- 04	-04	-			-			-	
Cadmium		0.4	20		<0.5	<0.5								
	rng kg					4	-			-			-	
Coppe	rng kg				32	2	240			-			-	340
end	rng kg		- 00	4	0.4	3	240	ď	<5	20	ý	<5	90	340
Me cu y	mg kg	٥	4		0.4	<0								
Nickel	rng kg		40			2	-			-			-	
CE - C9	-	0	620	-,	-28	295	<20	<20	- 40	<20	<20	<20	<20	Z20
C6 - C9 +C 0 - C36 (Sum o dal)	rng kg	•0	650		-25	-25	<20 4740	-20 -20	5300	<20 2.2	<20 71	<20 9790	<20 244	-20
A s	rng kg	50	0000		80	4250	4/40	C90	5 300	2.2	/3	9790	244	344
Benzolal py ene	ma ko	0.05	0.8	2		0.8	0.9		-05		-05			0.7
			200	- 4	7.9	47	92	-05 -05			405	<05	<0.5	
AHs Sum o tota)	rng kg	05	200		79	47	92	- Q 5	<0.5	6.8	- 49.5	<05		4.3

Notes <- esut less han labo a o y imit o epoting (OR) Shading o bold - esut gleate than cite a

					US 2-5E	US 2- 6E	US 2-7E	US 2- 8E	US 2- 9N	US 2-20N	QA2-7 8	QC2	US 2-2 N	US 2 22N
				am e e										
				e am e	US 2- 5E(2.4)	US 2- 6E(0 E)	US 2- 7E(7)	US 2- 8E 23)	US 2- SN(0.2)	US 2-20N(0.7)	QA2-7 8	QC2	US 2-2 N 2-4)	US 2-22N(0.3)
				am e a e	7 08 20 8	7 05 20 8	7 05 20 8	7 08 20 8	70820 8	7 06 20 8	7 08 20 8	7 08 20 8	7 05 20 8	7 08 20 8
				am e e	S 8-Au 0 66	5 8-Au 0 67	5 8-Au 0 68	S 5-Au 0 69	S 8 Au 0 70	5 5-Au 0 7	S 5-Au 0 84	98044-2	5 8-Au 0 72	S 8 Au 0 73
					BS&G 2020	BS&G 2020	BS&G 2020	BS&G 2020	BS&G 2020	BS&G 2020	B5&G 2020	BS&G 2020	BS&G 2020	B5&G 2020
em a ame	- 1		W A 2 4)											
am a	Tes	_	C	C 2										
T X														
Senzene	mgkg	02		4	9	9	8	<0	۰.0	9	8	<02	<0	9
Drhy benzene	mg kg	0.5	600	24	<0	0.6	0.2	<0	<0	40	40	<	<0	<0
o uene	mgkg	5	288	2	9		0.5	8	0	9	8	<05	9	9
Xyene oal	mg kg	5	000	4	<0.3	9	0.9	40.3	40.3	403	493	<	<0.3	<0.3
Me a a														
A sen c	mgkg	4	- 00	4										
Cadmium	mg kp	0.4	20											
Ch on un II+V)	mgkg													
Сорре	mg kg													
ead	mg kg		- 00	4	ح ح	50	64	ح ح	84	2	9	2	- 4	
Me cu y	mgkg	0	4											
Nickel	mg kg		40											
T														
CE - C9	mg kg	0	650	2	90	420	<20	-20	420	<20	9	ŝ	<20	40
+C 0 - C36 (Sum o dtsl)	mg kp	8	0000	- 4	263	8	7	ŝ	64	204	225		50	75
As	_	-												
Benzo(a) py ene	mg kg	8	0.5	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.5	0.7
Afts Sum o tota)	mgkg	5	200		<0.5	7	405	495	2	40.5	40.5	8000	<05	53

c- esut less han labo a o y imito epo trig (OR). Shading o bold - esut g eate than c te a

					_	US 2-23N	QA3-7 8	QC3	US 2-24N	US 2 27B	US 2-288	US 2 325	US 2 335	US 2 345	US 2 35N
					****	UJ 2-2311	QAD-7 E	903	UU 2-2411	03 2 2/0	03 2-200	03 4,343	03 2,333	U3 2,343	02 4,334
						18: 2,23W 21	043.75	003	US 2-24N 2-4)	US 2 27B(2 5)	US 2-28B(2.5)	US 2 325(0.3)	115 2 33500 fb	US 2 345 2 2)	US 2 35N(0.5)
					0 am 0	7 05 20 8	7.05.20.5	7.05.20 8	7.05.20.8	7.05.20 S	7.05.20.5	22.05.20 S	22.05.20.8	22 08 20 8	22.05.20 S
								7 08 20 8 98044-3							
					am e e	S 8-Au 0 74	5 8-Au 0 85		S 5-Au 0.75	S 8 Au 0 78	5 8-Au 0 79 855G 2020	S 5-Au27570	S 8 Au2757	5 B-Au27572	S 5 Au27573
-						BS&G 2020	BS&G 2020	BS&G 2020	B5&G 2020	BS&G 2020	BS&G 2020	B5&G 2020	BS&G 2020	BS&G 2020	B5&G 2020
L	em a ame			W A 2 4)											
L	am a	Tes	- 1	C	C 2										
L	T X														
П			02		4	<0	40	<02	9	40	49	<0	<0	<0	<0
П	Dhyberzene	mg kg	05	600	24	<0	<0	<	<0	<0	<0	<0	<0	<0	<0
П	o uene		05	288	2	8	-0	95	-0	8	8	\$	<0	8	9
П	Xyene oal	ngkg	05	000	4	<0.3	<0.3	*	<0.3	40.3	69.3	40.3	<0.3	<0.2	<0.3
1	le a x														
Г	Asenc	ngkg	4	00	4										
г	Cadmium	mg kg	0.4	20											
Г	Chomum II+V)	ngkg													
Г		ngkg													
Г		ngkg		00	4	G	4	25	0	Ġ	ů	20	- 6	ů,	22
	Me cu y	mg kg	٥	4											
Г	Nickel	ngkg		40											
П															
Г		ngkg	0	650	2	8	-20	- 25	<20	20	√20	- C20	-20	√20	400
н	+C 0 - C36 (Sum o dial)	ngkg	8	0000	4	70	250		2.0	ŝ	450	306	450	3 77	2.7
Г	A s														
г	Benzo(a) py ene	mg kg	8	0.5	2	<0.5	<0.5	0.07	-05	40.5	-05	27	<05	<0.5	2
t	Afts Sum o tota)	rig kg	05	200		<0.5	<05	0.07	-05	-05	-05	33.8	<05	33	25

<- eaut less han labo a o y imit o epoting (OR) Shading o bold - eaut gleate than cite a

					US 2_36N	US 2_37N	US 2_38B	US 2_395	US 2-43B	US 2 445	BHC 4	BH2 4	BH2 5	BH2 5	BH2 6
				am e e								2-2	05-025	2.2	05-06
				e am e	US 2_35N(0.9)	US 2_37N 2 3)	US 2_388(2.5)	US 2_39B(2.5)	US 2-435 28)	US 2 44B(3)	BH2 4_ 0-	SH2 4_202	20°C 5_05-025		2012 6_05-06
				am e a e	22 08 20 8	22 05 20 5	22 05 20 5	22 05 20 8	22 05 20 5	22 05 20 5	26 20 5	25 20 5	25 20 5	26 20 5	25 20 5
				am e e	S 8 Au27574	5 8-Au27575	5 8-Au27576	S 5-Au27577	\$ 8-5602290	5 8 Se0229	ES 537688043	ES 537688044	ES 537E88030		ES 537688028
					BS&G 2020	BS&G 2020	BS&G 2020	BS&G 2020	BS&G 2020	BS&G 2020	AECCM 20 5	AECOM 20 5	AECOM 20 5	AECOM 20 5	AECOM 20 5
em a ame	*		W A 2 4)												
am a	Tes	Ŧ	С	C 2											
T X															
	mg kg	0.2	0	4	49	40	- 40	<0			<0.2	<02	<0.2	<0.2	<0.2
E hybergene	mg kg	0.5	600	24	<0	<0	<0	<0			49.5	95	<0.5	<0.5	<0.5
	ngko	5	255	2	8	8	9	8			40.5	405	<0.5	<0.5	<0.5
	mg kg	05	000	4	493	40.3	403	40.3			40.5	405	<0.5	<0.5	<0.5
0.33															
A sen c	mg kg	4	00	4							- 6		ತ	<5	- 4
Cadmum	mg kg	0.4	20								<	4	<	<	<
	ngko										4	8	9	3	4
	mg kg											70	5		44
	mg kg		00	4	v	ò	ů,	S.			2	,	6	33	0
	mg kg	0	4								<0	2	<0	<0	0.2
Nickel	ngko		40								2	8	5	2	4
T	ļ														
	ngko	0	620	2	ş	420	<20	-20	8	<20	٠,	Ý	< 0	< 0	< 0
	mg kg	50	0000	4	য়	<50	4300	40	25	450	00	740	- ರು	00	-50
As															
	mg kg	8	0.8	2	<0.5	<0.5	<0.5	<0.5					<0.5	<0.5	<0.5
AHs (Sum o to al)	ngko	5	200		40.5	40.5	3.3	-05			6.3	25.6	<0.5		<0.5

<- esuit eas than aboatoylm to epoing (OR) Shadngobod-esuit geate than cie is

						BH2 6	BH2 6	BH2 7	BH2 7	BH2 8	BH2 8	BH2 8	BH2 9	BH2 9	EH2 9	BH220	BH220
					am e e	0506	5.6	0505	24-25	0 5 0 2 5	0 5-025	2.2	0-0	0.0		05-06	2-2
					e am e	QC2 6	DH2 6 5 6	BM2 7 05-05	BH2 7 2425	BH2 8 0 5-025	QC22	BH2 5 2 0-2	BH2 9 0 0 0	QC2 4	tH2 9 5-6	BH220 05-06	BM220A 2 0-2
					am e a e		25 20 5	25 20 5	26 20 5	25 20 5	24 20 5	26 20 5	25 20 5	25 20 5	25 20 5	26 20 5	26 20 5
					am e e	ES 537688049			ES 537688037	ES 537688045			ES 537688026			ES 537688034	ES 537688035
						AECOM 20 5	AECOM 20 5	AECOM 20 5	AECOM 20 5	AECOM 20 5	ECOM 20	AECOM 20 5	AECOM 20 5	AECOM 20 5	AECOM 20 5	AECOM 20 5	AECOM 20 5
Г	em a a e	- 1		W A 2 4)													
Г	am a	Tes	Ţ	С	C 2												
	r x																
	Senzene	mg kg	02		4	<0.2	<0.2	40.2	402	<0.2	<0.2	402	<02	<0.2	<0.2	<0.2	<0.2
ш	Dithy benzene	mg kg	0.5	600	24	<0.5	<0.5	<0.5	<0.5	<0.5	<	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ш	oluene	mg kg	05	288	2	√9.5	<05	95	-05	<05	<0.5	95	<05	√9.5	<05	<0.5	<0.5
	Xylene oal	mg kg	05	000	4	<0.5	<0.5	<05	95	405	a	405	<05	<0.5	<05	<0.5	<0.5
	A senic	mg kg	4	00	4	۵.		- 4	ব	٥	<4	ų	ব	<5	ų	v	ර
ш	Cadmium	mg kg	0.4	20		<	<	<	<	<	<0.4	<	<	<	<	<	<
	Ch om um (1+V)	mg kp				4	27	3	q	7		3	a	4	y	3	<2
L	Сорре	mg kg				35	364	9	ব	2	7	24	9	25	3	8	5
L	ead	mg kg		00	4	89	729	2.9		27	7	46	9	45	32	32	27
	Me cu y	mg kg	0	4		0.2	2	0	<0	<0	<0	<0	<0	<0	<0	<0	<0
Е	Nickel	mg kp		40		4	2	2	q	4	7	3	6	4	y	3	<2
Ŧ																	
	CE - C9	mg kg	0	650	2	< 0	< 0	< 0	< 0	< 0	Ŗ	< 0	< 0	< 0	< 0	Ŷ	< 0
	+C 0 - C36 (Sum o to al)	mg kp	я	0000	4	8	620	-50 50	ş	ş	7250	<50	ş	270	9	ş	-89
			-														
L	Benzo(s) py ene	mg kg	0.05	0.8	2	<05	7	Ø5	-05	405	0	95	<05	7	<05	<0.5	<0.5
С	AHs Sum o ota)	mg kp	5	200		05	68.9	405	95	405	0.45	9	95	5	<05	<0.5	<0.5

communication of the commun

			Г	- 1	BH22	BH22
			T I	am e e	-	2425
			T I	e am e	M22 0-	BH22 24-25
			Ī	am e a	25 20 5	25 20 5
			П	am e		ES 537E8804
			П		AECOM 20 5	AECOM 20 5
em a ame			W A 2 4)-	T		
	a T es	1)	C	C 2		
TX						
Service		02	0	4	<02	<0.2
Dhyberzene	mg kg	05	600	24	- ≪0.5	<05
cluene		05	255	2	<0.5	<05
Xylene oal	mg kg	05	000	4	- ≪0.5	<05
to a s						
A senic	mg kg	4	00	4	Ġ	6
Cadmium	mg kg	0.4	20		٧.	
Ch on un (1+V)	mg kg				9	Q
Coppe	mg kg				25	22
ead	mg kg		00	4	58	27
Me cu y		0	4		8	40
Nickel	mg kg		40		7	3
CE - C9	mg kg	0	620	2	۷ ۰	< 0
+C 0 - C36 (Sum o o al)	mg kg	8	0000	4	49	ş
A s						
Senzo(a) py ene		0.05	0.8	2	0.5	<05
Alts Sum o ota)	mg kg	05	200		26	<05

⁻ esut less han labos oy imito epoting (OR) Shading o bold - esut gles e han cite a

Location	Date	Easting	Northing	Total Depth of Well	Flush / Stick-up	Screened interval (m BTOC)	TOC (m AHD)	Depth to Groundwater (m BTOC)	Groundwater Elevation (m AHD)				Electrical Conductivity (µs/cm)	pН	Redox* (mV)	Temp. (°C)
NAVA/204	20/11/2015	224404.07	6246441.64	5.968	flush	1.5 to 4 5	20.18	drv	< 14 212	PRE	-	-		-	-	-
10100204	30/11/2013	334404 07	0240441.04	5.900	ilusii	1.5 10 4 5	20.16	ury	< 14 2 12	POST	-	-	-	-	-	-
MMAZOE	20/11/2015	334468 67	6246464.79	5.461	flush	2.0 to 6 0	20.29	4.318	15.972	PRE	0.5	0.18	177	6.06	209.9	23.1
10100203	30/11/2013	334400 07	0240404.79	5.461	ilusii	2.0 10 6 0	20.29	4.310	15.972	POST	3.5	0.00	106	5.35	203.5	21.7

Notes

Pre: Pre-purge water quality parameter readings
Post: Post-purge water quality parameter readings

- denotes no data available

m BTOC: metres Below Top of Casing m AHD: metres Australian Height Datum

mg/L - milligrams per litre

mV -millivolts

uS/cm - micro-siemens/cm

*Redox correction factor of +205 mV applied to field Redox results

NOTICE COLUMN C											
								0 375 0	MW205	00227	P D
Description											
								We	M/	1205	
Description Property Proper								am e a	30 20 5	30 20 5	†
### 1				(2000) Ma ine Ecosys ems 95% gge	Ms ine Ecosystems Med-	MW -	a 2				
Description Proceedings				Values							
Section Sect											
Sept 140 1				0.0055							
Main					0.0044						
Description											
Test 148 150	430 (116 HD)	mg	00 0	0.0044					<0.00	<0.00	nc
Test 148 150		-									-
Description Column Colum											
		mg	3005	00.5					0.009	0 009	0
		-	_	_			_				_
The state			-	_	_						
Description of the Control of the			-	_							
Section Sect			-	_	0.0						
				_							
Secolar American				_							
Description Column Colum				_			_				
			0 00	_			_				
Table	the country to your		-	_	_						
The state area			-	_	_						
Tender T			-	_	_						
				1							
The 1 1 1 1 1 1 1 1 1									-		-
	ndenni 2.3 c diny ene								-		-
December 2				70		N	N		-	-	nc.
Name of			0.5						40.5		
T			-		06						
Tennes	V 939	M2							<	-	-
Tailor	TX	_									†
Transfer Transfer	Servane	LII2		700		N	N		<	<	nc
Type H	£ hyberzene	M2			5	N	N		-2	-2	nc
Term 10 10 10 10 10 10 10 1	ouene	M2			80	N	N		-2	-2	nc
Test A	Xyene (m & p)	PG	2						<2	<2	nc
1 2 2 2 2 2 2 2 2 2	Xyene (p)	M2			350				-2	-2	nc
Column C	Xvene oal	M2	2			N	N		-2	-2	nc
He	oalB EX	ma	0.00						<0.00	<0.00	nc
	T.	_									†
2 C C A 2 3 4 5 7 7 7 7 7 7 7 7 7	C6 - C9	lag .	20						<20	<20	nc
26A CH IN ENC. 0 0 N N d) d R R C C C C C C C C						N	0				
C C C C H mg 1.		mg	9								nc
C 0 - C 4 10 50 - c 60 - c 60			9			N	N				nc
C 5 - C28 45 00 c c c c c c c c c c c c c c c c c c		mg	9						٠0		nc
C29-C36 jg 50 d0 nc											
C34-C40 mg (0 d0 mc							1				
	C34-C40	mg	9				1		40	9	nc

28 08 2023 ab e C6 GW age 0 2

				PIE O CIE G OUNDS	iass Ansytca	HEBU I				
							0 NT 0	MW205	QC227	R D
							We		V205	-
							an e a	30 20 5		-
			ANZECC	ANZECC (2000)	Α.	M2	M2	30 20 5	30 20 5	-
			(2000) Ma ine	Maine	MW-	M 2	M 2			
				Econystems Med-		a 2	a 2 stm			
			95% ggs	ow Reliability	a -2-cem	olm 2	a 2 cem			
			Values	OW PORT ALL TO		Postario .				
em a arre	- 1	$\overline{}$	VALUE							
A 0 A 0 A0 D		80								
2 tet achlo ce hane	PR	12						ç	Ġ	nc
-t chio oe hane	PR	12		270				ç	Ġ	nc
2.2 tet achlo oe hane	M2	5		400				- 4	- 6	nc
24 chio oe hane	M2	5	8000					- 4	- 4	nc
-dich o cethane	M2	5		250				- 4	- 4	nc
-dich o cethene	PG	5		700				্ত	- 6	nc
2.34 chio op opane	PG	5						্ত	- 6	nc
2-dich o cethane	PG	5		900				্ত	- 6	nc
Calbon et acho de	PG			240				্ত	- 6	nc
Chio cethane	PG	50						<50	<50	nc
Chicoom	PG	5		370				্ত	- 6	nc
Chio omethane	PG	50						<50	<50	nc
cs- 2-dich o cethene	PG	5						্ত	- 6	nc
c s- 3-dich o op opene	PR	12						ç	Ġ	nc
Hexachio obu adiene	PR	12		0.03				ç	Ġ	nc
ich o cethene	PR	12		330				ç	Ġ	nc
et achio os hens	PR	12		70				ç	Ġ	nc
tans- 2-dich o cethene	PR	12						ç	Ġ	nc
t ans- 3-dich o op opene	PR	12						ç	Ġ	nc
Vrytcho de	PR	8		00				450	48	nc
2.3-t chlo oberzene	PR	12		3				ç	Ġ	nc
2.4-t chio oberzene	HQ	5	240					ş	ů	nc
2-dich o obenzene	PR	5		60				<5	<5	nc
3-dichio obenzene	PR	12		260				ç	Ġ	nc
4-dich o obenzene	PR	12		60				ç	Ġ	nc
Chlo oberzene	PR	12		55				ç	Ġ	nc
2-db omoethane	PR	12						ç	Ġ	nc
\$ omodich o ome hane	PR	12						ç	Ġ	nc
\$ omo o m	2	5						ş	ů	no
\$ omomethane	2	8						43	433	no
Chio odb omomethane	2	5						ş	ů	no
0 b omome hane	HQ	5						<5	- 45	nc
Dicho odi uo omethane	HQ	8						43	433	nc
odometrane	HQ	5						<5	<5	nc
ich o o uo ome hane	HQ	8				-		ŝ	ŝ	nc
-dich o op opene	10	5				-		ů	ů	nc
2-db amo-3 cho op apane	HQ	5				-		ů	ů	nc
2-dich o op opane	HQ	5		900		-		ů	ů	nc
3-dich o op opane	110	5						3.6	3.0	nc nc
2.2-dich o op opene		5				_			- 6	
2 ch a a cluene	HQ	8				_		- 6	- 6	nc
4 ch o o oluene	140	5				_		Ş		nc
5 omobenzene	140	5				-		- 6	- 45	nc
cs- 4-D chlo o-2-butene	HQ	5				-		<5	ů	nc
entach o cethane	10	13		80		-		ů	ů	nc

Notes

- esuit ess han imto epoting (OR)

- µg -m cog amape ite mg -milg amape ite
- MS Hearth Screening level MW intrusive Maintenance Worke
- MW intius ve Maintenance Wolke R. D.-Relative is cent Di is ence
- Naghthane detections om vols ie analysis (u ge) < OR o sem-vols ie method SM) N - non imi ing

28 08 2023 abaCE GW 2929 2929

Client Name: City of Sydney Project Name: Gunyama Park Stage 2 and

George Julius Avenue North Project No: 60477507

Table C7 Acid Sulfate Soil Field Test Results

Test Location	Depth (m)	Soil Description	рН _F	pH _{FOX}	pH _{FOX} -pH _F	Reaction
BH201	0.4 - 0.5	FILL/Gravelly CLAY	8.6		0.4	Volcanic
BH201	1.4 – 1.5	FILL/SAND	8	6.8	-1.2	Volcanic
BH202	0.4 - 0.5	FILL/Gravelly SAND	7.5	5.3	-2.2	Volcanic
BH202	1.4 – 1.5	FILL/Gravelly SAND	7.8	6.5	-1.3	Volcanic
BH203	0.4 - 0.5	FILL/Gravelly SAND	7.2	5	-2.2	Volcanic
BH203	1.4 – 1.5	FILL/Gravelly SAND	8	7	-1	Volcanic
BH204	0.4 - 0.5	FILL/Gravelly SAND	8	7	-1	Volcanic
BH204	1.4 – 1.5	FILL/Gravelly SAND	8.2	7.2	-1	Volcanic
BH204	2.4 - 2.5	FILL/Gravelly SAND	8.4	7.5	-0.9	Volcanic
BH205	0.4 - 0.5	FILL/SAND	8.3	5.5	-2.8	Volcanic
BH205	1.4 – 1.5	FILL/Clayey SAND	6.5	4	-1.5	Volcanic
BH205	2.4 - 2.5	FILL/Clayey SAND	6.7	2.6	-4.1	Volcanic
BH206	0.4 - 0.5	FILL/SAND	7.4	6.8	-0.6	Volcanic
BH206	1.4 – 1.5	FILL/SAND	6.2	3.7	-2.5	Volcanic
BH206	2.4 - 2.5	FILL/SAND	5.9	3.3	-2.6	Volcanic
BH207	0.4 - 0.5	FILL/Gravelly SAND	8.9	8.5	-0.4	Volcanic
BH207	1.4 – 1.5	FILL/Clayey SAND	8.1	6.5	-1.6	Volcanic
BH208	0.4 - 0.5	FILL/Gravelly SAND	8.6	7.9	-0.7	Volcanic
BH208	1.4 – 1.5	FILL/Clayey SAND	8.8	6.7	-2.1	Volcanic
BH208	2.1 – 2.2	FILL/Clayey SAND	8.3	6.6	-1.7	Volcanic

Page 1 of 1 Print Date: 28/08/2023

						ſ	Lead TPH Fractions								т	RH Fraction	ne			BTEXN						
							Loau			actio						actio							DI LAN			
							Lead	60-90	C10-C14	C15-C28	C29-C36	C10-C36	C6-C10	C6-C10 less BTEX (F1)	>C10-C16 less Naphthalene (F2)	>C10-C16	>C16-C34	>C34-C40	>C10-C40	Benzene	Ethylbenzene	Toluene	Xylene (o)	Xylene (m&p)	Xylene (Total)	Naphthalene
<u>@</u>	HIL - C						600 1500																			
(201	EIL - Open Space						1100																			170
M	ESL - Open Space Management Lim												700			1000	2500	10000								
쀨	HSL C Sand 0 to	< 1 m												NL	NL					NL	NL	NL			NL	
	HSL C - Direct C													260 5100	NL 3800			7400		3 120	<u>NL</u> 5300	<u>NL</u> 18000			230 150000	1900
CRC Care (2013)			er - Direct Cont	tact									82000	3100	3000	62000	85000	120000		1100	3300	10000			130000	1300
008	Intrusive Mainten	ance Work	er - Sand 0-<2	m										NL	NL					77	NL	NL			NL	
						LOR	20	20	50	50	50	50	20	20	50	50	100	100	50	0.1	0.1	0.1	0.1	0.2	0.3	0.1
Location	Field ID	Matrix	Туре	Sample Date	Sample Code	Units Report No.	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
UST2 1W	UST2 1W(0.2)	Fill	West Wall	7/08/2018	S18 Au10152	611326	19	<20	<20	64	<50	64	<20	<20	<50	<50	<100	<100	<100	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5
UST2-2W UST2-3W	. ,	Sand Sand	West Wall West Wall		S18-Au10153 S18-Au10154	611326 611326	<5 <5	<20 <20	<20 1600	<50 5600	<50 78	<50 7278	<20 <20	<20 <20	<50 6200	<50 6200	<100 1900	<100 <100	<100 8100	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5 3.1
UST2_3W	UST2_3W(2.2)A	Sand	West Wall	22/08/2018	S18-Au27567	613527	<5	<20	1100	2700	<50	3800	<20	<20	3100	3100	880	<100	3980	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	0.8
UST2 4W UST2 4W	UST2 4W(0.3) UST2 4W(0.3)A	Fill Fill	West Wall West Wall		S18-Au10155 S18-Au27568	611326 613527	140 <5	<20 <20	56 <20	470 <50	430 <50	656 <50	<20 < 20	<20 <20	240 <50	240 <50	470 <100	<100 <100	710 <100	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5 <0.5
QA1-22/8	- \ /	Fill	West Wall		S18-Au33659	613527		< 20	<20	140	84	224	<20	<20	<50	<50	190	<100	190	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5
QC1-22/8 UST2-5W	40	Fill Sand	West Wall West Wall	22/08/2018 7/09/2019	199060-1 S18 Au10156	199060 611326	100 <5	<25 <20	<50 <20	110 <50	<100 61	- 61	<25 <20	<25 < 20	<50 < 50	<50 <50	140 <100	<100 <100	140 <100	<0.2 <0.1	<1 <0.1	<0.5 <0.1	<1 <0.1	<2 <0.2	<1 <0.3	<0.1 <0.5
QA1-7/8	QA1-7/8	Sand	West Wall		S18-Au10183	611326	< 5	<20 <20	<20	<50	€50	€50	<20	<20	<50	<50	<100	<100 <100	<100	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3 <0.3	<0.5
QC1 UST2-6W	QC1 UST2-6W(2.4)	Sand Sand	West Wall	7/08/2018	198044-1 S18-Au10157	198044 611326	2	<25 <20	<50 2600	<100 11.000	<100 240	- 13,840	<25	<25	<50 11,000	<50 11000	<100 4900	<100	<50	<0.2 <0.1	<1	<0.5	<1	<2 <0.2	<1	<0.1 <0.5-2.6
UST2_6W	UST2_6W(2.4)A		West Wall West Wall		S18 Au27569	613527	€ 5	<20 <20	1500	3400	58	4958	<20 <20	<20 <20	3900	3900	1100	<100 <100	15,900 5000	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2	<0.3 <0.3	<0.5-2.6
UST2-7S	\ /	Fill Sand	South Wall		S18-Au10158 S18-Au10159	611326 611326		<20 <20	1000	3600 <50	140 <50	4740 <50	<20 <20	<20	3600 <50	3600 <50	1700 <100	<100 <100	5300 <100	<0.1	<0.1	<0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5-3 <0.5
UST2-8S UST2-9S	\ /	Sand	South Wall		S18-Au10160	611326		<40	3000	12,000	300	15,300	<40	<20 <40	11,000	11000	5400	100	16,500	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1	<0.4	<0.6	<0.5-9.9
UST2-10S	UST2-10S(0.5) UST2-11S(1.1)	Fill	South Wall		S18-Au10161	611326		<20	<20	140	72	212	<20	<20	<50	<50	200	<100	200	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5-1.2
UST2-11S UST2-12S	UST2-11S(1.1)		South Wall South Wall		S18-Au10162 S18-Au10163	611326 611326		<20 <20	<20 2000	73 7600	<50 190	73 9790	<20 <20	<20 <20	<50 7600	<50 7600	<100 3400	<100 <100	<100 11,000	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5 <0.5-1.4
UST2-13E	UST2-13E(0.6)		East Wall		S18-Au10164	611326		<20	24	220	<50	244	<20	<20	97	97	160	<100	257	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5-0.7
	UST2-14E(1.9) UST2-15E(2.4)		East Wall East Wall		S18-Au10165 S18-Au10166	611326 611326		<20 <20	24 63	270 200	50 <50	344 263	<20 <20	<20 <20	110 220	110 220	190 <100	<100 <100	300 220	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5-0.6 <0.5
UST2-16E	UST2-16E(0.6)	Fill	East Wall	7/08/2018	S18-Au10167	611326	150	<20	<20	160	<50	160	<20	<20	75	76	110	<100	186	<0.1	0.6	1	0.2	1.8	1.9	<0.5-0.6
UST2-17E UST2-18E	UST2-17E(1.7) UST2-18E(2.3)		East Wall East Wall		S18-Au10168 S18-Au10169	611326 611326		<20 <20	21 <20	150 <50	<50 <50	171 <50	<20 <20	<20 <20	89 <50	89 <50	<100 <100	<100 <100	<100 <100	<0.1 <0.1	0 2 <0.1	0.5 <0.1	<0.1 <0.1	0.8 <0.2	0.9 <0.3	<0.5 <0.5
UST2-19N	UST2-19N(0.2)		East Wall	7/08/2018	S18-Au10170	611326	84	<20	<20	64	<50	64	<20	<20	<50	<50	<100	<100	<100	<0.1	<0.1	0.1	<0.1	<0.2	<0.3	<0.5
	UST2-20N(0.7) QA2-7/8	Sand	North Wall North Wall		S18-Au10171 S18-Au10184	611326 611326		<20 <20	<20 <20	150 160	54 65	204 225	<20 <20	<20 <20	<50 <50	<50 <50	160 190	<100 <100	160 190	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5 <0.5
QC2	QC2	Sand	North Wall	7/08/2018	198044-2	198044	12	<25	<50	<100	<100	-	<25	<25	<50	<50	<100	<100	<50	<0.2	<1	<0.5	<1	<2	<1	<0.1
UST2-21N UST2-22N	UST2-21N(2.4) UST2-22N(0.3)		North Wall		S18-Au10172 S18-Au10173	611326 611326		<20 <20	<20 <20	<50 75	<50 <50	<50 75	<20 <20	<20 <20	<50 <50	<50 <50	<100 <100	<100 <100	<100 <100	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5 <0.5
UST2-23N	UST2-23N(1.2)	Sand	North Wall	7/08/2018	S18-Au10174	611326	<5	<20	<20	170	<50	170	<20	<20	51	51	110	<100	161	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5
QA3-7/8 QC3		Sand Sand	North Wall	7/08/2018 7/08/2018	S18-Au10185 198044-3	611326 198044		<20 <25	<20 <50	260 130	<50 <100	260	<20 <25	<20 <25	90 58	90 58	170 <100	<100 <100	260 60	<0.1 <0.2	<0.1 <1	<0.1 <0.5	<0.1 <1	<0.2 <2	<0.3 <1	<0.5 <0.1
UST2-24N	UST2-24N(2.4)	Sand	North Wall	7/08/2018	S18-Au10175	611326	<5	<20	280	930	<50	1210	<20	<20	990	990	210	<100	1200	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5
UST2-27B UST2-28B	UST2-27B(2.5) UST2-28B(2.5)	Sand Sand	Base Base		S18-Au10178 S18-Au10179	611326 611326		<20 <20	<20 <20	<50 <50	<50 <50	<50 <50	<20 <20	<20 <20	<50 <50	<50 <50	<100 <100	<100 <100	<100 <100	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5 <0.5
UST2_32S	UST2_32S(0.3)	Fill	South Wall	22/08/2018	S18-Au27570	613527	120	<20	33	190	83	306	<20	<20	88	88	210	<100	298	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5
UST2_33S UST2_34S	UST2_33S(0.8) UST2_34S(2.2)		South Wall South Wall		S18-Au27571 S18-Au27572	613527 613527		<20 <20	<20 810	<50 2300	<50 67	<50 3177	<20 <20	<20 <20	<50 2600	<50 2600	<100 960	<100 <100	<100 3560	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5 <0.5
UST2_35N	UST2_35N(0.5)	Fill	North Wall	22/08/2018	S18-Au27573	613527	88	<20	<20	140	77	217	<20	<20	<50	<50	190	<100	190	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5
	UST2_36N(0.9) UST2_37N(2.3)		North Wall		S18-Au27574 S18-Au27575	613527 613527		<20 <20	<20 <20	<50 <50	<50 <50	<50 <50	<20 <20	<20 <20	<50 <50	<50 <50	<100 <100	<100 <100	<100 <100	<0.1	<0.1	<0.1	<0.1 <0.1	<0.2 <0.2	<0.3 <0.3	<0.5 <0.5
	UST2_37N(2.3) UST2_38B(2.5)		Base		S18-Au27575 S18-Au27576	613527		<20 <20	1300	3000	<50 <50	4300	<20 <20	<20 <20	3400	3400	980	<100	4380	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.2	<0.3	1.8
UST2_39B	UST2_39B(2.5)	Sand	Base	22/08/2018	S18-Au27577	613527	<5	<20	<20	<50	<50	<50	<20	<20	<50	<50	<100	<100	<100	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5
UST2-43B UST2-44B	UST2-43B(2.8) UST2-44B(3.1)		Base Base		S18-Se02290 S18-Se02291	615525 615525		<20 <20	<20 <20	100 190	98 270	198 460	<20 <20	<20 <20	<50 <50	<50 <50	170 380	<100 190	170 570	-	-	-	-	-	-	<0.5 <0.5

Notes
Strikethrough - Soil removed through further excavation to the west
< - result less than laboratory limit of reporting (LOR)
HSL - Health screening level
EIL - Ecological investigation level
ESL - Ecological screening level

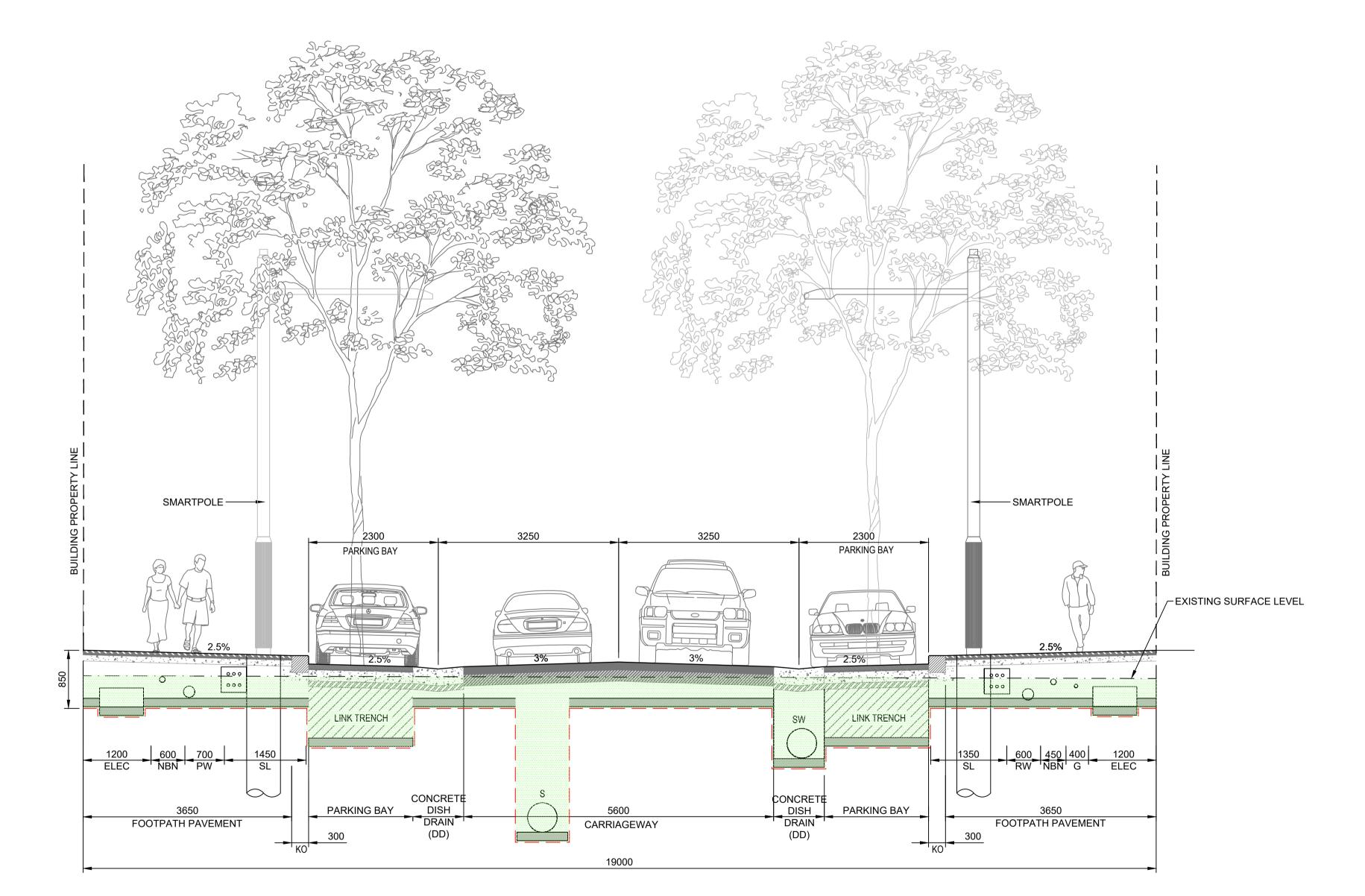
						1										PA	Hs									
													_													
							cenaphthene	cenaphthylene	nthracene	ıenz(a)an hracene	ienzo(a)pyrene	enzo(a)pyrene TEQ (lower bound)*	ienzo(a)pyrene TEQ (medium bound)	enzo(a)pyrene TEQ (upper bound)*	ienzo(b.j)fluoranthene	ienzo(b,j+k)fluoranthene	ienzo(g,h,i)perylene	ienzo(k)fluoranthene	Chrysene	ilbenz(a,h)anthracene	luoranthene	luorene	ndeno(1,2,3-c,d)pyrene	AHs (Total)	henanthrene	yrene
	HIL - C						4	4	4	ш		3	3	3	Ш	Ш	ш	ш	0		ш	ш	=	300		ш.
(2013)	HIL - D											40	40	40										4000		
	ESL - Open Space										0.7															
NEPM	Management Lim																									
Z	HSL C Sand 0 to																									
	HSL C Direct C										-															
CRC Care (2013)	Intrusive Mainten		er - Direct Cont	act																						
008	Intrusive Mainten																									
						LOR	0.1	0.1	0.1	0.1	0 05	0.5	0.5	0.5	0.5	0.2	0.1	0.5	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	le	las	-		0	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location UST2 1W		Matrix Fill	Type West Wall	Sample Date	Sample Code S18 Au10152	Report No. 611326	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	_	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
UST2-2W		Sand	West Wall		S18-Au10153	611326	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.6	1.2	<0.5 <0.5	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
UST2-3W	\ /	Sand	West Wall		S18-Au10154	611326	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	<0.5	3.8	<0.5	<0.5
UST2_3W UST2_4W	UST2_3W(2.2)A UST2_4W(0.3)	Sand Fill	West Wall West Wall		S18-Au27567 S18-Au10155	613527 611326	<0.5 <0.5	<1 <0.5	<0.5 0.9	<0.5 3.3	<0.5 3.5	<0.5 5.4	0.6 5.4	1.2 5.4	<0.5 1.9	-	<0.5 2.9	<0.5 2-3	<0.5 3.5	<0.5 0.9	<0.5 6.1	0.6 <0.5	<0.5 2.1	1.4 35.4	<0.5 2.1	<0.5 5.9
UST2_4W	UST2_4W(0.3)A		West Wall		S18-Au27568	613527	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
QA1-22/8		Fill Fill	West Wall		S18-Au33659	613527	<0.5	<0.5	<0.5	4	1.1	1.5	1.7	2	0.8	-	0.7	4	4	<0.5	1.9	<0.5	0.8	11.3	4	2
QC1-22/8 UST2 5W		Sand	West Wall West Wall	22/08/2018 7/08/2018	3 199060-1 3 S18 Au10156	199060 611326	<0.1 <0.5	0.1 <0.5	0.2 <0.5	0.8 <0.5	0.75 <0.5	4.1 <0.5	1.1 0.6	1.1 1.2	- <0.5	1 -	0.4 <0.5	- <0.5	0.7 <0.5	0.1 <0.5	4.6 <0.5	<0.1 <0.5	0.3 <0.5	8.6 <0.5	0.8 <0.5	4.6 <0.5
QA1-7/8	QA1-7/8	Sand	West Wall	7/08/2018	S18-Au10183	611326	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
QC1 UST2-6W		Sand Sand	West Wall West Wall		3 198044-1 3 S18-Au10157	198044 611326	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	<0.05 <0.5	<0.5 <0.5	<0.5 0.6	<0.5 1.2	- <0.5	<0.2	<0.1 <0.5	- <0.5	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	<0.05 <0.5	<0.1 <0.5	<0.1 <0.5
UST2_6W	UST2_6W(2.4)A		West Wall		S18 Au27569	613527	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
UST2-7S	\ /	Fill	South Wall		S18-Au10158	611326	<0.5	<0.5	<0.5	0.9	0.9	1.2	1.4	1.7	0.6	-	0.7	0.7	0.8	<0.5	1.8	<0.5	0.6	92	0.7	1.5
UST2-8S UST2-9S	/ -/	Sand Sand	South Wall South Wall		S18-Au10159 S18-Au10160	611326 611326	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.6 <0.5	1.2 0.6	<0.5 1.2	<0.5	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
UST2-10S		Fill	South Wall		S18-Au10161	611326	<0.5	<0.5	0.6	1.5	1.5	2	2.2	2.5	1	-	1.2	12	1.4	<0.5	3.5	<0.5	0.9	16.8	1.5	2.5
UST2-11S	(/	Sand	South Wall		S18-Au10162	611326	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	- 0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
UST2-12S UST2-13E	(/	Sand Fill	South Wall East Wall		S18-Au10163 S18-Au10164	611326 611326	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.6	1.2 1.2	<0.5 <0.5	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 0.6	<0.5 <0.5	<0.5 <0.5	<0.5 1 8	<0.5 0.5	<0.5 <0.5
UST2-14E	UST2-14E(1.9)	Sand	East Wall	7/08/2018	S18-Au10165	611326	<0.5	<0.5	<0.5	<0.5	0.7	0.8	1.1	1.4	0.6	-	0.6	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	43	0.6	0.6
UST2-15E UST2-16E	UST2-15E(2.4)		East Wall		S18-Au10166	611326		<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	- 0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
UST2-17E	UST2-16E(0.6) UST2-17E(1.7)		East Wall East Wall		S18-Au10167 S18-Au10168	611326 611326		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 0.6	0.6 1.2	1.2 <0.5	<0.5	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.6 <0.5	<0.5 <0.5	<0.5 <0.5	1.7 <0.5	0.5 <0.5	0.6 <0.5
UST2-18E	UST2-18E(2.3)	Sand	East Wall	7/08/2018	S18-Au10169	611326	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
UST2-19N UST2-20N	UST2-19N(0.2) UST2-20N(0.7)		East Wall North Wall		S18-Au10170 S18-Au10171	611326 611326		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.6 <0.5	1.2 0.6	<0.5 1.2	- <0.5	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.6 <0.5	<0.5 <0.5	<0.5 <0.5	1 2 <0.5	<0.5 <0.5	0.6 <0.5
QA2-7/8	` '	Sand	North Wall	7/08/2018	S18-Au10184	611326	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
QC2		Sand	North Wall		3 198044-2	198044		<0.1	<0.1	<0.1	<0.05	<0.5	<0.5	<0.5	-0.5	<0.2	<0.1	- -0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1
UST2-21N UST2-22N	UST2-21N(2.4) UST2-22N(0.3)	Fill	North Wall		S18-Au10172 S18-Au10173	611326 611326		<0.5 <0.5	<0.5 <0.5	<0.5 0.6	<0.5 0.7	<0.5 0.8	0.6 1.1	1.2 1.4	<0.5 <0.5	-	<0.5 <0.5	<0.5 0.5	<0.5 0.6	<0.5 <0.5	<0.5 1.1	<0.5 <0.5	<0.5 <0.5	<0.5 5 3	<0.5 0.7	<0.5 1.1
UST2-23N	UST2-23N(1.2)	Sand	North Wall	7/08/2018	S18-Au10174	611326	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
QA3-7/8 QC3		Sand Sand	North Wall		S18-Au10185 198044-3	611326 198044		<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2 <0.5	<0.5	0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 0.07	<0.5	<0.5
UST2-24N	UST2-24N(2.4)		North Wall North Wall		S S18-Au10175	611326		<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	0 07 <0.5	<0.5 <0.5	<0.5 0.6	1.2	<0.5	<0.2	<0.1 <0.5	<0.5	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	<0.1 <0.5	<0.5	<0.1 <0.5	<0.1 <0.5
UST2-27B	UST2-27B(2.5)	Sand	Base		S18-Au10178	611326	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
UST2-28B UST2_32S	UST2-28B(2.5) UST2_32S(0.3)		Base South Wall		S18-Au10179 S18-Au27570	611326 613527		<0.5 0.7	<0.5 1.2	<0.5 2.8	<0.5 2.7	<0.5 3.6	0.6 3.9	1.2 4.1	<0.5 3.1	-	<0.5 1.7	<0.5 1 3	<0.5 2.4	<0.5 <0.5	<0.5 5.9	<0.5 0.5	<0.5 1.4	<0.5 33.8	<0.5 4.5	<0.5 5.6
UST2_33S	UST2_33S(0.8)		South Wall		S18-Au27571	613527	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
UST2_34S	UST2_34S(2.2)	Sand	South Wall	22/08/2018	S18-Au27572	613527	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	33	1.4	<0.5
UST2_35N UST2_36N	UST2_35N(0.5) UST2_36N(0.9)		North Wall		S18-Au27573 S18-Au27574	613527 613527	<0.5 <0.5	<0.5 <0.5	0.8 <0.5	2.2 <0.5	2 <0.5	2.7 <0.5	2.9 0.6	3.2 1.2	2.2 <0.5	-	1.3 <0.5	1 <0.5	1.9 <0.5	<0.5 <0.5	4.9 <0.5	<0.5 <0.5	1 <0.5	25.1 <0.5	3.3 <0.5	4.5 <0.5
UST2_37N	UST2_37N(2.3)		North Wall		S18-Au27575	613527	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
UST2_38B	UST2_38B(2.5)	Sand	Base		S18-Au27576	613527	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	33	0.7	<0.5
UST2_39B UST2-43B	UST2_39B(2.5) UST2-43B(2.8)		Base Base		S18-Au27577 S18-Se02290	613527 615525	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
UST2-43B	UST2-44B(3.1)		Base		S18-Se02291	615525		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		_							_	-																

Notes
Strikethrough - Soil removed through further excavation to the west
< - result less than laboratory limit of reporting (LOR)
HSL - Health screening level
EIL - Ecological investigation level
ESL - Ecological screening level

				Lead		т	PH Fraction	16		1		BTEXN				PAHs	
				Leau		- 11	rn Fractioi	13				DIEVIA					l
				Lead	62-93	C10-C14	C15-C28	C29-C36	C10-C36	Benzene	Ethylbenzene	Toluene	Xylene (Total)	Naphthalene	Benzo(a)pyrene	Benzo(a)pyrene TEQ (medium bound)	PAHs (Total)
	HIL - C			600												3	300
3	HIL - D			1500												40	4000
<u>5</u>	EIL - Open Space	e		1100										170	0.7		
<u> </u>	ESL - Open Space																
NEPM (2013)	Management Lim																
ä	HSL C Sand 0 to	< 1 m								NL	NL	NL	NL				
	HSL D Sand 0 to	< 1 m								<u>3</u>	NL	<u>NL</u>	<u>230</u>				
ပ္ပ္ကုတ္ထိ	HSL C - Direct C	Contact	•		•					120	5300	18000	150000	1900			
CRC Care (2013)	Intrusive Mainten	ance Worker - Di	rect Contact							1100							
_ 5 5 8	Intrusive Mainter	nance Worker - S	and 0-<2m							77	NL	NL	NL				
	LOR			20	20	50	50	50	50	0.1	0.1	0.1	0.3	0.1	0 05	0.5	0.1
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Location	Field ID	Sample Date	Report No.	9,9	99	99	99	99	99	99	9,9	99	99	9,9	99	99	99
BH03	14531-BH3(0.8)		ИER-08-1453	96	<35	<50	280	<100	280	<0.5	<0.5	<1	<0.5	<0.3	3.8	5.4	39.6
TP03	DG-TP3 (0.3)	18/09/2020	ES2033094	197.2	<25	<50	<100	<100	<100	<0.5	<0.5	<1	<0.5	1 03	4.15	6.01	68 29
TP03	DG-TP3 (1.0)	18/09/2020	ES2033094	<10	<25	<50	<100	<100	<100	<0.5	<0.5	<1	<0.5	<0.3	<0.3	0.36	0
TP03	DG-TP3 (1.5)	18/09/2020	ES2033094	<10	<25	<50	<100	<100	<100	< 0.5	<0.5	<1	<0.5	< 0.3	< 0.3	0.36	0

Notes
< - result less than laboratory limit of reporting (LOR)
HSL - Health screening level
EIL - Ecological inves igation level
ESL - Ecological screening level

Appendix D


Typical Capping Layer Cross Sections

REMEDIATION EARTHWORKS AS PART OF THE WORKS.

NOTE:

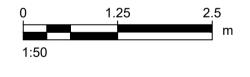
- REFER TO FIGURE 3 FOR LOCATION OF AREA OF REMEDIATION WORKS AS PART OF THE WORKS.
- 2. REFER TO FIGURE 8 FOR DETAILS.

TYPICAL SECTION - OTHER LANDOWNER AREAS OUTSIDE EXISTING ROAD RESERVE

SCALE 1:50

AECOM

Gunyama Park and George Julius Avenue North


CLIENT

CONSULTANT

AECOM Australia Pty Ltd Level 21, 420 George Street, Sydney, NSW 2000 PO Box Q410, QVB PO, Sydney, NSW, 1230 +61 2 8934 0000 tel +61 2 8934 0001 fax www.aecom.com

SCALE BAR

ISSUE/REVISION

02	19.02.2019	ISSUED FOR INFORMATION
01	06.08.2015	ISSUED FOR INFORMATION
I/R	DATE	DESCRIPTION

KEY PLAN

PROJECT NUMBER

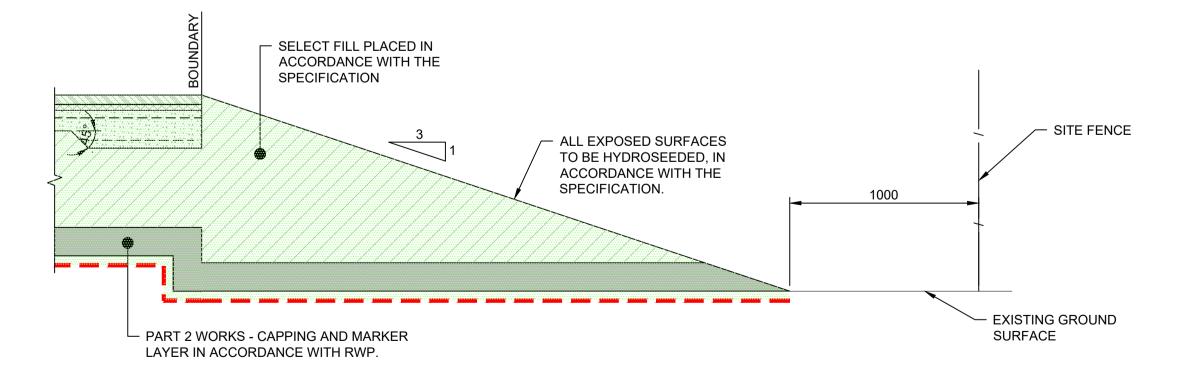
60477507 SHEET TITLE

FIGURE 07

TYPICAL CROSS SECTION OTHER LAND OWNER AREAS

SHEET NUMBER

REV


02

DETAIL FOR SHALLOW SERVICE (FOR SERVICES UP TO 1m BELOW EXISTING SURFACE)

SCALE 1:10

PROPOSED FINISHED LEVEL TRENCH BACKFILL IN ACCORDANCE WITH THE SPECIFICATION PART 2 WORKS - 150 CAPPING LAYER IN ACCORDANCE WITH – PART 2 WORKS -MARKER LAYER IN ACCORDANCE WITH RWP. TRENCH BACKFILL IN ACCORDANCE WITH THE SPECIFICATION - PART 2 WORKS - NEW MARKER LAYER IN ACCORDANCE WITH RWP PART 2 WORKS - 150mm CAPPING LAYER IN ACCORDANCE WITH RWP

DETAIL FOR DEEP SERVICE (FOR SERVICES DEEPER THAN 1m BELOW **EXISTING SURFACE)**

BATTER DETAIL AT EDGE OF WORKS SCALE 1:20

LEGEND:

REMEDIATION EARTHWORKS BY CITY OF SYDNEY CONTRACTOR.

NOTES:

- 1. THESE DETAILS APPLY TO THE AREAS TO BE REMEDIATED AS PART OF THE WORKS WHICH FALL OUTSIDE THE GREEN SQUARE CONSORTIUM AREA.
- 2. REFER TO FIGURE 7 FOR TYPICAL CROSS-SECTION.

Gunyama Park and George Julius Avenue

AECOM

CLIENT


North

CONSULTANT

AECOM Australia Pty Ltd Level 21, 420 George Street, Sydney, NSW 2000 PO Box Q410, QVB PO, Sydney, NSW, 1230 +61 2 8934 0000 tel +61 2 8934 0001 fax www.aecom.com

SCALE BAR

ISSUE/REVISION

	02	19.02.2019	ISSUED FOR INFORMATION
	01	06.08.2015	ISSUED FOR INFORMATION
	I/R	DATE	DESCRIPTION

KEY PLAN

PROJECT NUMBER

60477507 SHEET TITLE

FIGURE 08

TRENCHES AND BATTER DETAILS OTHER LAND OWNER AREAS

SHEET NUMBER

REV 02

NOT FOR CONSTRUCTION